Skip to main content

From the Gate-Control Theory to Brain Programs for Neonatal Pain

  • Chapter
Neonatal Pain
  • 851 Accesses

Abstract

Large numbers of low-birthweight (LBW) and preterm neonates are born in developed and underdeveloped countries each year [1], and many of them are extremely premature (<1500 g). For their normal, routine care, it may be necessary for these infants to undergo repeated or prolonged exposure to stress, pain, and maternal separation in the neonatal intensive care unit (NICU). At this stage, the brain’s architecture and vasculature are very immature, and these neonates can only survive because of improved obstetric and neonatal care [1]. Despite an increasing survival rate, preterm infants develop a high prevalence of cognitive deficits, learning difficulties, and abnormal behaviors during their early childhood and primary school years. Multiple follow-up studies of ex-preterm neonates have reported neurodevelopmental deficits [2–4], with needs for special assistance [5] and increasing burdens for health care and society [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyert DL, Freedman MA, Strobino DM, Guyer B (2001) Annual summary of vital statistics: 2000. Pediatrics 108:1241–1255

    Article  CAS  PubMed  Google Scholar 

  2. McCormick MC, Gortmaker SL, Sobol AM (1990) Very low birth weight children: behavior problems and school difficulty in a national sample. J Pediatr 117:687–693

    Article  CAS  PubMed  Google Scholar 

  3. Breslau N, Chilcoat H, Del Dotto J et al (1996) Low birth weight and neurocognitive status at six years of age. Biol Psychiatr 40:389–397

    Article  CAS  Google Scholar 

  4. Achenbach TM, Howell CT, Aoki MF, Rauh VA (1993) Nine-year outcome of the Vermont intervention program for low birth weight infants. Pediatrics 91:45–55

    CAS  PubMed  Google Scholar 

  5. McCormick MC, Brooks-Gunn J, Workman-Daniels K et al (1992) The health and developmental status of very low-birth-weight children at school age. JAMA 267:2204–2208

    Article  CAS  PubMed  Google Scholar 

  6. Slonim AD, Patel KM, Ruttimann UE, Pollack MM (2000) The impact of prematurity: a perspective of pediatric intensive care units. Crit Care Med 28:848–853

    Article  CAS  PubMed  Google Scholar 

  7. Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737

    Article  PubMed  Google Scholar 

  8. Hack M, Flannery DJ, Schluchter M et al (2002) Outcomes in young adulthood for very-low-birthweight infants. N Engl J Med 346:149–157

    Article  PubMed  Google Scholar 

  9. Anand KJS (2000) Effects of perinatal pain. In: Mayer EA, Saper CB (eds) The biological basis for mind-body interactions. Elsevier Science, New York, pp 117–129

    Chapter  Google Scholar 

  10. Rakic P (1998) Images in neuroscience. Brain development, VI: radial migration and cortical evolution. Am J Psychiatr 155:1150–1151

    Article  CAS  PubMed  Google Scholar 

  11. Rakic P, Bourgeois J-P, Eckenhoff MF et al (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235

    Article  CAS  PubMed  Google Scholar 

  12. Gould E, Cameron HA (1997) Early NMDA receptor blockade impairs defensive behavior and increases cell proliferation in the dentate gyrus of developing rats. Behav Neurosci 111:49–56

    Article  CAS  PubMed  Google Scholar 

  13. Komuro H, Rakic P (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    Article  CAS  PubMed  Google Scholar 

  14. Yen L, Sibley JT, Constantine-Paton M (1995) Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment. J Neurosci 15:4712–4725

    CAS  PubMed  Google Scholar 

  15. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  CAS  PubMed  Google Scholar 

  16. Rao H, Jean A, Kessler JP (1997) Postnatal ontogeny of glutamate receptors in the rat nucleus tractus solitarii and ventrolateral medulla. J Auton Nerv Syst 65:25–32

    Article  CAS  PubMed  Google Scholar 

  17. Chahal H, D’Souza SW, Barson AJ, Slater P (1998) Modulation by magnesium of N-methyl-D-aspartate receptors in developing human brain. Arch Dis Child Fetal Neonatal Ed 78:F116–F120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitani A, Watanabe M, Kataoka K (1998) Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus. J Neurosci 18:7941–7952

    CAS  PubMed  Google Scholar 

  19. Ritter LM, Unis AS, Meador-Woodruff JH (2001) Ontogeny of ionotropic glutamate receptor expression in human fetal brain. Brain Res Dev Brain Res 127:123–133

    Article  CAS  PubMed  Google Scholar 

  20. McDonald JW, Silverstein FS, Johnston MV (1988) Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459:200–203

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    Article  CAS  PubMed  Google Scholar 

  22. Tsumoto T, Kimura F, Nishigori A (1990) A role of NMDA receptors and Ca2+ influx in synaptic plasticity in the developing visual cortex. Adv Exp Med Biol 268:173–180

    Article  CAS  PubMed  Google Scholar 

  23. Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  CAS  PubMed  Google Scholar 

  24. Du Y, Bales KR, Dodel RC et al (1997) Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 94:11657–11662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabinowicz T, de Courten-Myers GM, Petetot JM et al (1996) Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. J Neuropathol Exp Neurol 55:320–332

    Article  CAS  PubMed  Google Scholar 

  27. Dikranian K, Ishimaru MJ, Tenkova T et al (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 8:359–379

    Article  CAS  PubMed  Google Scholar 

  28. Miller MW, al-Ghoul WM (1993) Numbers of neurons in the developing principal sensory nucleus of the trigeminal nerve: enhanced survival of early-generated neurons over late-generated neurons. J Comp Neurol 330:491–501

    Article  CAS  PubMed  Google Scholar 

  29. Waite PM, Li L, Ashwell KW (1992) Developmental and lesion induced cell death in the rat ventrobasal complex. Neuroreport 3:485–488

    Article  CAS  PubMed  Google Scholar 

  30. Spreafico R, Frassoni C, Arcelli P et al (1995) In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. J Comp Neurol 363:281–295

    Article  CAS  PubMed  Google Scholar 

  31. Ferrer I, Bernet E, Soriano E et al (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39:451–458

    Article  CAS  PubMed  Google Scholar 

  32. Finlay BL, Slattery M (1983) Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219:1349–1351

    Article  CAS  PubMed  Google Scholar 

  33. Mooney S, Miller M (2000) Expression of bcl-2, bax, and caspase-3 in the brain of the developing rat. Dev Brain Res 123:103–117

    Article  CAS  Google Scholar 

  34. Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    CAS  PubMed  Google Scholar 

  35. Back SA, Gan X, Li Y et al (1998) Maturation dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  36. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    Article  CAS  PubMed  Google Scholar 

  37. Nagata N, Saji M, Ito T et al (2000) Repetitive intermittent hypoxia-ischemia and brain damage in neonatal rats. Brain and Development 22:315–320

    Article  CAS  PubMed  Google Scholar 

  38. Despres P, Frenkiel MP, Ceccaldi PE et al (1998) Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol 72:823–829

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Papadopoulos MC, Lamb FJ, Moss RF et al (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci 96:461–466

    Article  CAS  PubMed  Google Scholar 

  40. Shanks N, Larocque S, Meaney MJ (1995) Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary adrenal axis: early illness and later responsivity to stress. J Neurosci 15:376–384

    CAS  PubMed  Google Scholar 

  41. Anand KJS (2000) Pain, plasticity, and premature birth: a prescription for permanent suffering? Nature Med 6:971–973

    Article  CAS  PubMed  Google Scholar 

  42. Gray L, Watt L, Blass EM (2000) Skin-to-skin contact is analgesic in healthy newborns. Pediatrics 105:e14

    Article  CAS  PubMed  Google Scholar 

  43. Anand KJS, Coskun V, Thrivikraman KV et al (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 66:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruda MA, Ling Q-D, Hohmann AG et al (2000) Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 289:628–631

    Article  CAS  PubMed  Google Scholar 

  45. Bhutta AT, Rovnaghi CR, Simpson PM et al (2001) Interactions of inflammatory pain and morphine treatment in infant rats: long-term behavioral effects. Physiol Behav 73:51–58

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds ML, Fitzgerald M (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J Comp Neurol 358:487–498

    Article  CAS  PubMed  Google Scholar 

  47. Rahman W, Fitzgerald M, Aynsley-Green A, Dickenson AH (1997) The effects of neonatal exposure to inflammation and/or morphine on neuronal responses and morphine analgesia in adult rats. In: Jensen TS, Turner JA, Wiesenfeld-Hallin Z (eds) Proceedings of the 8th World Congress on Pain. IASP Press, Seattle, pp 783–794

    Google Scholar 

  48. Newton BW, Rovnaghi CR, Narsinghani U et al (2000) Supraspinal fos expression may have neuroprotective effects in inflammation-induced neuronal cell death: a FluoroJade-B and C-fos study. Soc Neurosci Abstr 26(Pt 1):435

    Google Scholar 

  49. Kim YI, Na HS, Yoon YW et al (1997) NMDA receptors are important for both mechanical and thermal allodynia from peripheral nerve injury in rats. Neuroreport 8:2149–2153

    Article  CAS  PubMed  Google Scholar 

  50. Zhuo M (1998) NMDA receptor-dependent long term hyperalgesia after tail amputation in mice. Eur J Pharmacol 349:211–220

    Article  CAS  PubMed  Google Scholar 

  51. Baranauskas G, Nistri A (1998) Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog Neurobiol 54:349–365

    Article  CAS  PubMed  Google Scholar 

  52. Chiang CY, Hu JW, Sessle BJ (1997) NMDA receptor involvement in neuroplastic changes induced by neonatal capsaicin treatment in trigeminal nociceptive neurons. J Neurophysiol 78:2799–2803

    CAS  PubMed  Google Scholar 

  53. McCormack K, Prather P, Chapleo C (1998) Some new insights into the effects of opioids in phasic and tonic nociceptive tests. Pain 78:79–98

    Article  CAS  PubMed  Google Scholar 

  54. Anand KJS, McIntosh N, Lagercrantz H et al (1999) Analgesia and sedation in ventilated preterm neonates: results from the pilot N.O.P.A.I.N. Trial. Arch Pediatr Adolesc Med 153:331–338

    Article  CAS  PubMed  Google Scholar 

  55. Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwaljeet J. S. Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anand, K.J.S. (2017). From the Gate-Control Theory to Brain Programs for Neonatal Pain. In: Buonocore, G., Bellieni, C.V. (eds) Neonatal Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-53232-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53232-5_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53230-1

  • Online ISBN: 978-3-319-53232-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics