Skip to main content

Neonatal Stressors

  • Chapter
Neonatal Pain

Abstract

About 2.2 billion years ago, as the oxygen level of the planet was rising, a new sort of life form emerged, forged from a shaky alliance of what were to become the mitochondria and the remainder of the cell. The protomitochondria brought respiration to the partnership, and with it the power to kill every new cell by production of reactive oxygen species—a mechanism of cell death that still exists throughout the eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J, Graham SH, Nakayama M et al (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17:2–10

    Article  CAS  PubMed  Google Scholar 

  2. Merry DE, Veis EDJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311

    CAS  PubMed  Google Scholar 

  3. Chen J, Graham SH, Chan PH et al (1995) Bcl-2 is expressed in neurons that survive focal ischemia in rat. Neuroreport 6:394–398

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson MD, Raff MC (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374:814–816

    Article  CAS  PubMed  Google Scholar 

  5. Martinou JC, Dubois-Dauphin M, Staple JR et al (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    Article  CAS  PubMed  Google Scholar 

  6. Zhong LT, Sarafian T, Kane DJ et al (1993) Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci 90:4533–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hara A, Iwai T, Niwa M et al (1996) Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res 711:249–253

    Article  CAS  PubMed  Google Scholar 

  8. Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Rosenbaum DM, Michaelson M, Batter DK et al (1994) Evidence for hypoxia-induced, programmed cell death of culture neurons. Ann Neurol 36:864–870

    Article  CAS  PubMed  Google Scholar 

  10. Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122–1126

    Article  CAS  PubMed  Google Scholar 

  11. Golstein P (1997) Controlling cell death. Science 275:1081–1082

    Article  CAS  PubMed  Google Scholar 

  12. Krajewski S, Mal JK, Krajewska M et al (1995) Upregulation of Bax protein levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376

    CAS  PubMed  Google Scholar 

  13. Gillardon F, Wickert H, Zimmerman M (1995) Up-regulation of Bax and down-regulation of Bcl-2 is associated with kainite-induced apoptosis in mouse brain. Neurosci Lett 192:85–88

    Article  CAS  PubMed  Google Scholar 

  14. Gillardon F, Lenz C, Waschke KF et al (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 40:254–260

    Article  CAS  PubMed  Google Scholar 

  15. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  16. Bossenmeyer C, Chihab R, Muller S et al (1997) Differential expression of specific proteins associated with apoptosis (Bax) or cell survival (Bcl-2, HSP70, HSP105) after short and long-term hypoxia in cultured central neurons. Pediatr Res 41:41A

    Article  Google Scholar 

  17. Ravishankar S, Ashraf QM, Fritz K et al (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 901:23–29

    Article  CAS  PubMed  Google Scholar 

  18. Marin MC, Fernandez A, Bick RJ et al (1996) Apoptosis suppression by Bcl-2 is correlated with regulation of nuclear and cytosolic Ca2+. Oncogene 12:2259–2266

    CAS  PubMed  Google Scholar 

  19. Al-Mohanna FA, Caddy KWT, Boisover SR (1994) The nucleus is isolated from large cytosolic calcium ion changes. Nature 367:745–750

    Article  CAS  PubMed  Google Scholar 

  20. Santella L, Carafoli E (1997) Calcium signaling in cell nucleus. FASEB J 11:1091–1109

    CAS  PubMed  Google Scholar 

  21. Steinhardt RA, Alderton J (1988) Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 332:364–366

    Article  CAS  PubMed  Google Scholar 

  22. Tombes RM, Simerly C, Borisy GG, Schatten G (1992) Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J Cell Biol 117:799–811

    Article  CAS  PubMed  Google Scholar 

  23. Mishra OP, Delivoria-Papadopoulos M (2002) Nitric oxide-mediated Ca++-influx in neuronal nuclei and cortical synaptosomes of normoxic and hypoxic newborn piglets. Neurosci Lett 318:93–97

    Article  CAS  PubMed  Google Scholar 

  24. Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomemclature. Cell 87:171

    Article  CAS  PubMed  Google Scholar 

  25. Donepudi M, Grutter MG (2002) Structure and zymogen activation of caspases. Biophys Chem 101–102:145–154

    Article  PubMed  Google Scholar 

  26. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5

    Article  PubMed  Google Scholar 

  27. Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  CAS  PubMed  Google Scholar 

  28. Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    Article  CAS  PubMed  Google Scholar 

  29. Rotonda J, Nicholson DW, Fazil KM et al (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3:619–625

    Article  CAS  PubMed  Google Scholar 

  30. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3:255–267

    CAS  PubMed  Google Scholar 

  32. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  CAS  PubMed  Google Scholar 

  33. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655

    Article  CAS  PubMed  Google Scholar 

  34. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    Article  CAS  PubMed  Google Scholar 

  36. Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    Article  CAS  PubMed  Google Scholar 

  37. Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10:1073–1083

    Article  CAS  PubMed  Google Scholar 

  38. Yuan J, Shaham S, Ledoux S et al (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    Article  CAS  PubMed  Google Scholar 

  39. Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  CAS  PubMed  Google Scholar 

  40. Woo M, Hakem R, Soengas MS et al (1998) Essential contribution of caspase-3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hakem R, HakemA DGS (1998) Differential requirement for caspase-9 in apoptotic pathways in vivo. Cell 94:339–352

    Article  CAS  PubMed  Google Scholar 

  42. Kuida K, Haydar TF, Kuan C-Y et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9. Cell 94:325–337

    Article  CAS  PubMed  Google Scholar 

  43. Bump NJ, Hackett M, Hugunin M et al (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein. Science 269:1885–1888

    Article  CAS  PubMed  Google Scholar 

  44. Sugimoto A, Friesen PD, Rothman JH (1994) Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans. EMBO J 13:2023–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  46. Beidler DR, Tewari M, Friesen PD et al (1995) The baculovirus p35 protein inhibits Fasand tumor necrosis factor-induced apoptosis. J Biol Chem 270:16426–16528

    Article  Google Scholar 

  47. Datta R, Kojima H, Banach D et al (1997) Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem 272:1965–1919

    Article  CAS  PubMed  Google Scholar 

  48. Mudduluru M, Zubrow AB, Ashraf QM et al (2010) Tyrosine phosphorylation of apoptotic proteins during hyperoxia in mitochondria of the cerebral cortex of newborn piglets. Neurochem Res 35:1003–1009

    Article  CAS  PubMed  Google Scholar 

  49. Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  CAS  PubMed  Google Scholar 

  50. Verhagen AM, Vaux DL (2002) Cell death regulation by the mammalian IAP antagonist diablo/Smac. Apoptosis 7:163–166

    Article  CAS  PubMed  Google Scholar 

  51. Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  52. Westphal D, Dewson G, Menard M et al (2014) Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci U S A 111:E4076–E4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kratimenos P, Koutroulis I, Marconi D et al (2014) Multi-targeted molecular therapeutic approach in aggressive neuroblastoma: the effect of focal adhesion kinase-Src-Paxillin system. Expert Opin Ther Targets 18:1395–1406

    CAS  PubMed  Google Scholar 

  54. Lam CK, Zhao W, Liu GS et al (2015) HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart. Proc Natl Acad Sci U S A 112:E6466–E6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Delivoria-Papadopoulos, M., Kratimenos, P. (2017). Neonatal Stressors. In: Buonocore, G., Bellieni, C.V. (eds) Neonatal Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-53232-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53232-5_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53230-1

  • Online ISBN: 978-3-319-53232-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics