Skip to main content

Brain Aging in the Dog

  • Chapter
  • First Online:
Canine and Feline Dementia
  • 991 Accesses

Abstract

Dogs develop behavioral and cognitive dysfunction with age. Interestingly, as with humans, not all aged dogs become impaired, and there can be significant individual variability. Studies of the brains of cognitively characterized aged dogs suggest several possible underlying neurobiological mechanisms for observed impairments. In this chapter, changes in canine brains associated with atrophy, neuron loss, accumulation of beta-amyloid (Aβ), mitochondrial dysfunction, and resulting accumulation of oxidative damage are described. There are many important features of brain aging in dogs that overlap significantly with human brain aging, suggesting they are a useful model system in which to test interventions that may lead to healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attems J (2005) Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol 110(4):345–359

    Article  CAS  PubMed  Google Scholar 

  • Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110(3):222–231

    Article  PubMed  Google Scholar 

  • Azizeh BY, Head E, Ibrahim MA, Torp R, Tenner AJ, Kim RC, Lott IT, Cotman CW (2000) Molecular dating of senile plaques in the brains of individuals with Down syndrome and in aged dogs. Exp Neurol 163(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25(1):5–18. author reply 49–62

    Article  CAS  PubMed  Google Scholar 

  • Bobinski M, Wegiel J, Tarnawski M, Bobinski M, Reisberg B, de Leon MJ, Miller DC, Wisniewski HM (1997) Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56(4):414–420

    Article  CAS  PubMed  Google Scholar 

  • Bosch MN, Pugliese M, Gimeno-Bayon J, Rodriguez MJ, Mahy N (2012) Dogs with cognitive dysfunction syndrome: a natural model of Alzheimer’s disease. Curr Alzheimer Res 9(3):298–314

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33(6):403–408

    Article  CAS  PubMed  Google Scholar 

  • Chambers JK, Mutsuga M, Uchida K, Nakayama H (2011) Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid 18(2):63–71

    Article  CAS  PubMed  Google Scholar 

  • Chambers JK, Uchida K, Nakayama H (2012) White matter myelin loss in the brains of aged dogs. Exp Gerontol 47(3):263–269

    Article  CAS  PubMed  Google Scholar 

  • Colle M-A, Hauw J-J, Crespeau F, Uchiara T, Akiyama H, Checler F, Pageat P, Duykaerts C (2000) Vascular and parenchymal Aβ deposition in the aging dog: correlation with behavior. Neurobiol Aging 21(5):695–704

    Article  CAS  Google Scholar 

  • Cotman CW, Head E (2008) The canine (dog) model of human aging and disease: dietary, environmental and immunotherapy approaches. J Alzheimer’s Dis 15(4):685–707

    Article  CAS  Google Scholar 

  • Cotman CW, Head E, Muggenburg BA, Zicker S, Milgram NW (2002) Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol Aging 23(5):809–818

    Article  CAS  PubMed  Google Scholar 

  • Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW (1996) Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learning Memory 66(1):11–23

    Article  CAS  Google Scholar 

  • Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Dowling AL, Head E (2012) Antioxidants in the canine model of human aging. Biochim Biophys Acta (BBA)-Mol Basis of Dis 1822(5):685–689

    Article  CAS  Google Scholar 

  • Du AT, Schuff N, Chao LL, Kornak J, Jagust WJ, Kramer JH, Reed BR, Miller BL, Norman D, Chui HC, Weiner MW (2006) Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiol Aging 27(5):733–740

    Article  PubMed  Google Scholar 

  • Ezekiel F, Chao L, Kornak J, Du AT, Cardenas V, Truran D, Jagust W, Chui H, Miller B, Yaffe K, Schuff N, Weiner M (2004) Comparisons between global and focal brain atrophy rates in normal aging and Alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis Assoc Disorders 18(4):196

    Google Scholar 

  • Fahnestock M, Marchese M, Head E, Pop V, Michalski B, Milgram WN, Cotman CW (2010) BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiol Aging 2010

    Google Scholar 

  • Frost JL, Le KX, Cynis H, Ekpo E, Kleinschmidt M, Palmour RM, Ervin FR, Snigdha S, Cotman CW, Saido TC, Vassar RJ, St George-Hyslop P, Ikezu T, Schilling S, Demuth HU, Lemere CA (2013) Pyroglutamate-3 amyloid-β deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol 183(2):369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccone G, Verga L, Finazzi M, Pollo B, Tagliavini F, Frangione B, Bugiani O (1990) Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci Lett 114(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Gold BT, Johnson NF, Powell DK, Smith CD (2012) White matter integrity and vulnerability to Alzheimer’s disease: preliminary findings and future directions. Biochim Biophys Acta (BBA)-Mol Basis Dis 1822(3):416–422

    Article  CAS  Google Scholar 

  • Gonzalez-Soriano J, Garcia PM, Contreras-Rodriguez J, Martinez-Sainz P, Rodriguez-Veiga E (2001) Age-related changes in the ventricular system of the dog brain. Ann Anatomy-Anatomischer Anzeiger 183(3):283–291

    Article  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Head E (2000) Brain aging in dogs: parallels with human brain aging and Alzheimer’s disease. Veterinary Therapeut: Research Applied Veterinary Med 2(3):247–260

    Google Scholar 

  • Head E (2011) Neurobiology of the aging dog. Age 33(3):485–496

    Article  CAS  PubMed  Google Scholar 

  • Head E (2013) A canine model of human aging and Alzheimer’s disease. Biochim Biophys Acta (BBA)-Mol Basis Dis 1832(9):1384–1389

    Article  CAS  Google Scholar 

  • Head E, Callahan H, Muggenburg BA, Cotman CW, Milgram NW (1998) Visual-discrimination learning ability and β-amyloid accumulation in the dog. Neurobiol Aging 19(5):415–425

    Article  CAS  PubMed  Google Scholar 

  • Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW (2000) Region-specific age at onset of β-amyloid in dogs. Neurobiol Aging 21(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, Cotman CW (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82(2):375–381

    Article  CAS  PubMed  Google Scholar 

  • Head E, Nukala VN, Fenoglio KA, Muggenburg BA, Cotman CW, Sullivan PG (2009) Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging. Exp Neurol 220(1):171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head E, Pop V, Sarsoza F, Kayed R, Beckett TL, Studzinski CM, Tomic JL, Glabe CG, Murphy MP (2010) Amyloid-β peptide and oligomers in the brain and cerebrospinal fluid of aged canines. J Alzheimer’s Dis 20(2):637–646

    Article  CAS  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  Google Scholar 

  • Herzig MC, Nostrand WE, Jucker M (2006) Mechanism of cerebral β-amyloid angiopathy: murine and cellular models. Brain Pathol 16(1):40–54

    Article  CAS  PubMed  Google Scholar 

  • Hwang IK, Yoo KY, Li H, Choi JH, Kwon YG, Ahn Y, Lee IS, Won MH (2007) Differences in doublecortin immunoreactivity and protein levels in the hippocampal dentate gyrus between adult and aged dogs. Neurochem Res 32(9):1604–1609

    Article  CAS  PubMed  Google Scholar 

  • Hwang IK, Yoon YS, Yoo KY, Li H, Choi JH, Kim DW, Yi SS, Seong JK, Lee IS, Won MH (2008) Differences in lipid peroxidation and Cu, Zn-superoxide dismutase in the hippocampal CA1 region between adult and aged dogs. J Veterinary Med Sci 70(3):273–277

    Article  CAS  Google Scholar 

  • Intlekofer KA, Cotman CW (2013) Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis 57:47–55

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Gondo T, Takahashi M, Uchino F, Ikeda SI, Allsop D, Imai K (1991) Immunohistochemical and immunoelectron microscopical characterization of cerebrovascular and senile plaque amyloid in aged dogs’ brains. Brain Res 548(1):196–205

    Article  CAS  PubMed  Google Scholar 

  • Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol Brain Res 10(4):299–305

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  CAS  PubMed  Google Scholar 

  • Kiatipattanasakul W, Nakamura SI, Kuroki K, Nakayama H (1997) Immunohistochemical detection of anti-oxidative stress enzymes in the dog brain. Neuropathology 17(4):307–312

    Article  Google Scholar 

  • Kimotsuki T, Nagaoka T, Yasuda M, Tamahara S, Matsuki N, Ono K (2005) Changes of magnetic resonance imaging on the brain in beagle dogs with aging. J Veterinary Med Sci 67(10):961–967

    Article  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  PubMed  Google Scholar 

  • Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Butterfield DA (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29(1):51–70

    Article  CAS  PubMed  Google Scholar 

  • Ozawa M, Chambers JK, Uchida K, Nakayama H (2016) The relation between canine cognitive dysfunction and age-related brain lesions. J Veterinary Med Sci 78(6):997–1006

    Article  Google Scholar 

  • Papaioannou N, Tooten PC, van Ederen AM, Bohl JR, Rofina J, Tsangaris T, Gruys E (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 8(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Pekcec A, Baumgärtner W, Bankstahl JP, Stein VM, Potschka H (2008) Effect of aging on neurogenesis in the canine brain. Aging Cell 7(3):368–374

    Article  CAS  PubMed  Google Scholar 

  • Prior R, D’Urso D, Frank R, Prikulis I, Pavlakovic G (1996) Loss of vessel wall viability in cerebral amyloid angiopathy. Neuroreport 7(2):562–564

    Article  CAS  PubMed  Google Scholar 

  • Pugliese M, Geloso MC, Carrasco JL, Mascort J, Michetti F, Mahy N (2006) Canine cognitive deficit correlates with diffuse plaque maturation and S100β (−) astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathol 111(6):519–528

    Article  PubMed  Google Scholar 

  • Rofina JE, Singh K, Skoumalova-Vesela A, van Ederen AM, van Asten AJ, Wilhelm J, Gruys E (2004) Histochemical accumulation of oxidative damage products is associated with Alzheimer-like pathology in the canine. Amyloid 11(2):90–100

    Article  CAS  PubMed  Google Scholar 

  • Rofina JE, Van Ederen AM, Toussaint MJM, Secreve M, Van Der Spek A, Van Der Meer I, Eerdenburg FJ, Gruys E (2006) Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease. Brain Res 1069(1):216–226

    Article  CAS  PubMed  Google Scholar 

  • Romanucci M, Della Salda L (2015) Oxidative stress and protein quality control systems in the aged canine brain as a model for human neurodegenerative disorders. Oxidative Med Cell Longevity 2015:e940131

    Article  Google Scholar 

  • Sarasa L, Allué JA, Pesini P, González-Martínez Á, Sarasa M (2013) Identification of β-amyloid species in canine cerebrospinal fluid by mass spectrometry. Neurobiol Aging 34(9):2125–2132

    Article  CAS  PubMed  Google Scholar 

  • Satou T, Cummings BJ, Head E, Nielson KA, Hahn FF, Milgram NW, Velazquez P, Cribbs DH, Tenner AJ, Cotman CW (1997) The progression of β-amyloid deposition in the frontal cortex of the aged canine. Brain Res 774(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Schutt T, Helboe L, Pedersen LO, Waldemar G, Berendt M, Pedersen JT (2016) Dogs with cognitive dysfunction as a spontaneous model for early Alzheimer’s disease: a translational study of neuropathological and inflammatory markers. J Alzheimer’s Dis 52(2):433–449

    Article  Google Scholar 

  • Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Ann Rev Neurosci 17(1):489–517

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235(4791):873–877

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci 91(23):10771–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada A, Kuwamura M, Akawkura T, Umemura T, Takada K, Ohama E, Itakura C (1992) Topographic relationship between senile plaques and cerebrovascular amyloidosis in the brain of aged dogs. J Veterinary Med Sci 54(1):137–144

    Article  CAS  Google Scholar 

  • Šimić G, Kostović I, Winblad B, Bogdanović N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comparative Neurol 379(4):482–494

    Article  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2007) Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learning Memory 88(2):249–259

    Article  CAS  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2008) Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol Aging 29(1):39–50

    Article  PubMed  Google Scholar 

  • Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J (2003) The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. Exp Gerontol 38(6):711–719

    Article  CAS  PubMed  Google Scholar 

  • Snigdha S, de Rivera C, Milgram NW, Cotman C (2014) Exercise enhances memory consolidation in the aging brain. Front Aging Neurosci 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Su MY, Head E, Brooks WM, Wang Z, Muggenberg BA, Adam GE, Sutherland RJ, Cotman CW, Nalcioglu O (1998) Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging 19(5):479–485

    Article  CAS  PubMed  Google Scholar 

  • Swanson KS, Vester BM, Apanavicius CJ, Kirby NA, Schook LB (2007) Implications of age and diet on canine cerebral cortex transcription. Neurobiol Aging 30(8):1314–1326

    Article  Google Scholar 

  • Tapp PD, Siwak CT, Gao FQ, Chiou JY, Black SE, Head E, Muggenburg BA, Cotman CW, Milgram NW, Su MY (2004) Frontal lobe volume, function, and β-amyloid pathology in a canine model of aging. J Neurosci 24(38):8205–8213

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800

    Article  PubMed  Google Scholar 

  • Uchida K, Miyauchi Y, Nakayama H, Goto N (1990) Amyloid angiopathy with cerebral hemorrhage and senile plaque in aged dogs. Nippon Juigaku Zasshi 52(3):605–611

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Nakayama H, Goto N (1991) Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J Veterinary Med Sci 53(6):1037–1042

    Article  CAS  Google Scholar 

  • Uchida K, Tani Y, Uetsuka K, Nakayama H, Goto N (1992) Immunohistochemical studies on canine cerebral amyloid angiopathy and senile plaques. J Veterinary Med Sci 54(4):659–667

    Article  CAS  Google Scholar 

  • Uchida K, Okuda R, Yamaguchi R, Tateyama S, Nakayama H, Goto N (1993) Double-labeling immunohistochemical studies on canine senile plaques and cerebral amyloid angiopathy. J Veterinary Med Sci 55(4):637–642

    Article  CAS  Google Scholar 

  • Uchida K, Kuroki K, Yoshino T, Yamaguchi R, Tateyama S (1997) Immunohistochemical study of constituents other than β-protein in canine senile plaques and cerebral amyloid angiopathy. Acta Neuropathol 93(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557

    Article  CAS  PubMed  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Kawas CH, Martin LJ, Troncoso JC (2000) The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Ann NY Acad Sci 908(1):255–259

    Article  CAS  PubMed  Google Scholar 

  • Wilcock DM (2013) Neuroinflammatory phenotypes and their roles in Alzheimer’s disease. Neurodegenerative Dis 13(2-3):183–185

    Article  Google Scholar 

  • Wisniewski H, Johnson AB, Raine CS, Kay WJ, Terry RD (1970) Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study. Lab Investig 23:287–296

    CAS  PubMed  Google Scholar 

  • Wisniewski HM, Wegiel J, Morys J, Bancher C, Soltysiak Z, Kim KS (1990) Aged dogs: an animal model to study beta-protein amyloidogenesis. In: Alzheimer’s disease. Epidemiology, neuropathology, neurochemistry, and clinics. Springer, New York, pp 151–167

    Chapter  Google Scholar 

  • Yoshino T, Uchida K, Tateyama S, Yamaguchi R, Nakayama H, Goto N (1996) A retrospective study of canine senile plaques and cerebral amyloid angiopathy. Veterinary Pathol Online 33(2):230–234

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding provided by the NIH/NIA R01AG0031764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Head .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nichol, J., Head, E. (2017). Brain Aging in the Dog. In: Landsberg, G., Maďari, A., Žilka, N. (eds) Canine and Feline Dementia. Springer, Cham. https://doi.org/10.1007/978-3-319-53219-6_5

Download citation

Publish with us

Policies and ethics