Skip to main content

The Aged Dog as a Natural Model of Alzheimer’s Disease Progression

  • Chapter
  • First Online:
Canine and Feline Dementia

Abstract

Alzheimer’s disease is the most common cause of dementia in humans and is rapidly becoming an unmet medical need of epidemic proportions. Although billions of dollars have been allocated to this cause, more than 190 putative Alzheimer’s disease drugs have failed in the clinic, exemplifying the high risk-to-reward ratio of therapeutic development. One factor implicated in this high failure rate is the limitation of animal models to accurately predict clinical outcomes. The fact that some of these models, such as transgenic mice, have a 100% failure rate for predicting clinical outcomes of putative drugs exemplifies their limitations and the need for additional models that better recapitulate the multifactorial nature of Alzheimer’s disease progression. Aged dogs naturally develop Alzheimer’s-like neuropathological changes, as well as cognitive-domain specific impairments consistent with early stages of Alzheimer’s disease progression. Moreover, cross-sectional data in differentially aged dogs suggests that Alzheimer’s relevant biomarker changes are also found in dogs and could be used to monitor early stage Alzheimer’s-like disease progression. The aged dog model accurately predicted the clinical outcome of both the gold standard symptomatic Alzheimer’s disease therapeutic, donepezil, and the failure of active fibrillary amyloid vaccination strategies. The aged dog, therefore, provides a valuable preclinical animal model for assessing Alzheimer’s disease therapeutics with demonstrable translational value for predicting clinical outcomes. Given the translational validity of the model, it is likely that Alzheimer’s disease clinical research could also be used for improving care of senior dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adalsteinsson E, Sullivan EV, Kleinhans N, Spielman DM, Pfefferbaum A (2000) Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet. 355(9216):1696–1697

    Article  CAS  PubMed  Google Scholar 

  • Adams B, Chan A, Callahan H, Siwak C, Tapp D, Ikeda-Douglas C, Atkinson P, Head E, Cotman CW, Milgram NW (2000) Use of a delayed non-matching to position task to model age-dependent cognitive decline in the dog. Behav Brain Res 108(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Albert MS (2011) Changes in cognition. Neurobiol Aging 32(1):S58–S63

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute of Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves RPS, Yang MJ, Batista MT, Ferreira LCS (2014) Alzheimer’s disease: is a vaccine possible? Brazil J Med Biol Res 47(6):438–444

    Article  CAS  Google Scholar 

  • Alzheimer A (1906) Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurologisches Centralblatt 23:1129–1136

    Google Scholar 

  • Amieva H, Phillips LH, Della Sala S, Henry JD (2004) Inhibitory functioning in Alzheimer’s disease. Brain 127(5):949–964

    Article  PubMed  Google Scholar 

  • Araujo JA, Chan ADF, Winka LL, Seymour PA, Milgram NW (2004) Dose-specific effects of scopolamine on canine cognition: impairment of visuospatial memory, but not visuospatial discrimination. Psychopharmacology 175(1):92–98

    Article  CAS  PubMed  Google Scholar 

  • Araujo JA, de Rivera C, Milgram NW (2008) Visual attention is decreased in aged dogs. Alzheimer’s Dementia 4(4):T205–T206

    Article  Google Scholar 

  • Araujo JA, Greig NH, Ingram DK, Sandin J, de Rivera C, Milgram NW (2011a) Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J Alzheimer’s Dis 26(1):143–155

    CAS  Google Scholar 

  • Araujo JA, Nobrega JN, Raymond R, Milgram NW (2011b) Aged dogs demonstrate both increased sensitivity to scopolamine impairment and decreased muscarinic receptor density. Pharmacol Biochem Behav 98(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Araujo J, de Rivera C, Baulk J, Kelly S, Chakravarthy B (2013a) The reliability of and age effects on CSF measures of beta-amyloid 42 in beagle dogs: implications for a natural animal model of Alzheimer’s disease progression. Alzheimer’s Dementia 9(4):P851

    Google Scholar 

  • Araujo JA, de Rivera C, Milgram NW, Sandin J (2013b) Pharmacological validation of the canine model of Alzheimer’s disease: donepezil improves memory in cognitively impaired aged beagle dogs. J Alzheimer’s Dis 5(4):e23

    Google Scholar 

  • Araujo J, Sokolnicki K, Hesterman J, Hoppin J, Araujo D, Dobson H (2013c) Aged beagle dogs demonstrate reduced brain metabolism measured using PET-MR. Alzheimer’s Dementia 9(4):P851

    Google Scholar 

  • Attems J (2005) Sporadic cerebral amyloid angiopathy; pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol 110(4):345–359

    Article  CAS  PubMed  Google Scholar 

  • Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110(3):222–231

    Article  PubMed  Google Scholar 

  • Backman L, Ginovart N, Dixon RA, Robins Wahlin TB, Wahlin A, Halldin C, Farde L (2000) Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry 157(4):635–637

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163(2):495–529

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean R, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  PubMed  Google Scholar 

  • Becker RE, Greig NH (2012) Increasing the success rate of Alzheimer’s disease drug discovery and development. Expert Opin Drug Discov 7(4):367–370

    Article  CAS  PubMed  Google Scholar 

  • Becker JT, Huff J, Nebes RD, Holland A, Boller F (1988) Neuropsychological function in Alzheimer’s disease: pattern of impairment and rates of progression. Archiv Neurol 45(3):263–268

    Article  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Bobinski M, Wegiel J, Tarnawski M, Bobinski M, Reisberg B, De Leon MJ, Miller DC, Wisniewski HM (1997) Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56(4):414–420

    Article  CAS  PubMed  Google Scholar 

  • Bobinski M, De Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (1999) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95(3):721–725

    Google Scholar 

  • Borghys H, Tuefferd M, Van Broeck B, Clessens E, Dillen L, Cools W, Vinken P, Straetemans R, De Ridder F, Gijsen H, Mercken M (2012) A canine model to evaluate efficacy and safety of γ-secretase inhibitors and modulators. J Alzheimer’s Dis 28(4):809–822

    CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33(6):403–408

    Article  CAS  PubMed  Google Scholar 

  • Buerger K, Ewers M, Pirttilä T, Zinkowski R, Alafuzoff I, Teipel SJ, DeBernardis J, Kerkman D, McCulloch C, Soininen H, Hampel H (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129(11):3035–3041

    Article  PubMed  Google Scholar 

  • Chan AD, Nippak P, Murphey H, Ikeda-Douglas CJ, Muggenburg B, Head E, Cotman CW, Milgram NW (2002) Visuospatial impairments in aged canines (Canis familiaris): the role of cognitive-behavioral flexibility. Behav Neurosci 116(3):443

    Article  PubMed  Google Scholar 

  • Colle MA, Hauw JJ, Crespeau F, Uchihara T, Akiyama H, Checler F, Pageat P, Duykaerts C (2000) Vascular and parenchymal Aβ deposition in the aging dog: correlation with behavior. Neurobiol Aging 21(5):695–704

    Article  CAS  Google Scholar 

  • Cotman CW, Head E, Muggenburg BA, Zicker S, Milgram NW (2002) Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol Aging 23(5):809–818

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2000) Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging. 21(6):845–861

    Article  CAS  PubMed  Google Scholar 

  • Cummings BJ, Su JH, Cotman CW, White R, Russell MJ (1993) β-Amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease. Neurobiol Aging 14(6):547–560

    Article  CAS  PubMed  Google Scholar 

  • Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW (1996a) β-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learning Memory 66(1):11–23

    Article  CAS  Google Scholar 

  • Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW (1996b) The canine as an animal model of human aging and dementia. Neurobiol Aging 17(2):259–268

    Article  CAS  PubMed  Google Scholar 

  • Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996c) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17(6):921–933

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug development pipeline: few candidates, frequent failures. Alzheimer’s Res Therapy. 6(4):37

    Article  Google Scholar 

  • Czasch S, Paul S, Baumgartner W (2006) A comparison of immunohistochemical and silver staining methods for the detection of diffuse plaques in the aged canine brain. Neurobiol Aging 27(2):293–305

    Article  CAS  PubMed  Google Scholar 

  • Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515

    Google Scholar 

  • De Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Scherer AJ, Roche A, Imossi A (2001) Prediction of cognitive decline in normal elderly subjects with 2-[18F] fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci 98(19):10966–10971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rivera C, Konyer B, Dobson H, Araujo JA, Milgram NW (2007) Magnetic resonance spectroscopy reveals similarities in brain metabolites between puppies and kittens. Society Neurosci 868.18/B12

    Google Scholar 

  • Delano-Wood L, Bondi MW, Sacco J, Abeles N, Jak AJ, Libon DJ, Bozoki A (2009) Heterogeneity in mild cognitive impairment: differences in neuropsychological profile and associated white matter lesion pathology. J Int Neuropsychol Soc 15(6):906–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimakopoulous AC, Mayer RJ (2002) Aspects of neurodegeneration in the canine brain. J Nutrition 132(6):1579S–1582S

    Google Scholar 

  • Double KL, Halliday GM, Krill JJ, Harasty JA, Cullen K, Brooks WS, Creasey H, Broe GA (1996) Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiol Aging 17(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system: a relationship to aging? Archives Neurol 30(2):113–121

    Article  CAS  Google Scholar 

  • Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholinergic disorder’—evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115(2):235–249

    Article  CAS  PubMed  Google Scholar 

  • Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer disease. J Am Med Assoc 287(24):3223–3229

    Article  CAS  Google Scholar 

  • Eppig J, Wambach D, Nieves C, Price CC, Lamar M, Delano-Wood L, Giovannetti T, Bettcher BM, Penney DL, Swenson R, Lippa C, Kabasakalian A, Bondi MW, Libon DJ (2012) Dysexecutive functioning in mild cognitive impairment: derailment in temporal gradients. J Int Neuropsychol Soc 18(1):20–28

    Article  PubMed  Google Scholar 

  • Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann Neurol 59(3):512–519

    Article  CAS  PubMed  Google Scholar 

  • Foldi NS, Lobosco JJ, Schaefer LA (2002) The effect of attentional dysfunction in Alzheimer’s disease: theoretical and practical implications. Semin Speech Lang 23(2):139–150. Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA

    Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magnet Reson Imag 7(6):1069–1075

    Article  CAS  Google Scholar 

  • Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Giaccone G, Verga L, Finazzi M, Pollo B, Tagliavini F, Frangione B, Bugiani O (1990) Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci Lett 114(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Soriano J, Garcia PM, Contreras-Rodriguez J, Martinez-Sainz P, Rodriguez-Veiga E (2001) Age-related changes in the ventricular system of the dog brain. Ann Anatomy-Anatomischer Anzeiger 183(3):283–291

    Article  CAS  Google Scholar 

  • Grady CL, Haxby JV, Horwitz B, Sundaram M, Berg G, Schapiro M, Friedland RP, Rapoport SI (1988) Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol 10(5):576–596

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Sambamurti K, Yu QS, Brossi A, Bruinsma GB, Lahiri DK (2005) An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr Alzheimer Res 2(3):281–290

    Article  CAS  PubMed  Google Scholar 

  • Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA, Shiga T, Wester HJ, Kurz A, Drzezga A (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65(11):927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grober E, Dickson D, Sliwinski MJ, Buschke H, Katz M, Crystal H, Lipton RB (1999) Memory and mental status correlates of modified Braak staging. Neurobiol Aging. 20(6):573–579

    Article  CAS  PubMed  Google Scholar 

  • Grossman H, Bergmann C, Parker S (2006) Dementia: a brief review. Mount Sinai J Med 73(7):985–992

    Google Scholar 

  • Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 28(3):327–335

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Bürger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s Dementia 4(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimer’s Dis 9(3):151–153

    Article  CAS  Google Scholar 

  • Head E, Callahan H, Muggenburg BA, Cotman CW, Milgram NW (1998) Visual-discrimination learning ability and β-amyloid accumulation in the dog. Neurobiol Aging 19(5):415–425

    Article  CAS  PubMed  Google Scholar 

  • Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW (2000) Region-specific age at onset of β-amyloid in dogs. Neurobiol Aging. 21(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, Cotman CW (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82(2):375–381

    Article  CAS  PubMed  Google Scholar 

  • Head E, Barrett EG, Murphy MP, Das P, Nistor M, Sarsoza F, Glabe CC, Kayed R, Milton S, Vasilevko V, Milgram NW (2006) Immunization with fibrillar Aβ 1–42 in young and aged canines: Antibody generation and characteristics, and effects on CSF and brain Aβ. Vaccine 24(15):2824–2834

    Article  CAS  PubMed  Google Scholar 

  • Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C, Barrett E (2008) A two-year study with fibrillar β-amyloid (Aβ) immunization in aged canines: effects on cognitive function and brain Aβ. J Neurosci 28(14):3555–3566

    Article  CAS  PubMed  Google Scholar 

  • Head E, Nukala VN, Fenoglio KA, Muggenburg BA, Cotman CW, Sullivan PG (2009) Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging. Exp Neurol 220(1):171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16(1):40–54

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E (2008) Long-term effects of Aβ 42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223

    Article  CAS  PubMed  Google Scholar 

  • Horwitz B, Tagamets MA, McIntosh AR (1999) Neural modeling, functional brain imaging, and cognition. Trends Cognit Sci 3(3):91–98

    Article  CAS  Google Scholar 

  • Hwang IK, Yoon YS, Yoo KY, Li H, Choi JH, Kim DW, Yi SS, Seong JK, Lee IS, Won MH (2008) Differences in lipid peroxidation and Cu, Zn-superoxide dismutase in the hippocampal CA1 region between adult and aged dogs. J Veterinary Med Sci 70(3):273–277

    Article  CAS  Google Scholar 

  • Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathy Exp Neurol 56(10):1095–1097

    Article  CAS  Google Scholar 

  • Insua D, Suárez ML, Santamarina G, Sarasa M, Pesini P (2010) Dogs with canine counterpart of Alzheimer’s disease lose noradrenergic neurons. Neurobiol Aging 31(4):625–635

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Gondo T, Takahashi M, Uchino F, Ikeda SI, Allsop D, Imai K (1991) Immunohistochemical and immunoelectron microscopical characterization of cerebrovascular and senile plaque amyloid in aged dogs’ brains. Brain Res 548(1):196–205

    Article  CAS  PubMed  Google Scholar 

  • Jack CR, Petersen RC, O'Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42(1):183–183

    Article  PubMed  Google Scholar 

  • Jack CR, Petersen RC, Xu YC, Waring SC, O'Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49(3):786–794

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith GE, Ivnik RJ, Tangalos EG, Petersen RC (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65(8):1227–1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale AM (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magnet Res Imag 27(4):685–691

    Article  Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M (2006) Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 59(4):673–681

    Article  PubMed  Google Scholar 

  • Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA, Reiman EM, Foster NL, Petersen RC, Weiner MW, Price JC, Mathis CA (2009) Relationships between biomarkers in aging and dementia. Neurology 73(15):1193–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janus C, Westaway D (2001) Transgenic mouse models of Alzheimer’s disease. Physiol Behav 73(5):873–886

    Article  CAS  PubMed  Google Scholar 

  • Johnson DK, Storandt M, Morris JC, Galvin JE (2009) Longitudinal study of the transition from healthy aging to Alzheimer’s disease. Archiv Neurol 66(10):1254–1259

    Article  Google Scholar 

  • Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol Brain Res 10(4):299–305

    Article  CAS  PubMed  Google Scholar 

  • Kantarci KJCJ, Jack CR, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease a 1h mrs study. Neurology 55(2):210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiatipattanasakul W, Nakamura SI, Kuroki K, Nakayama H (1997) Immunohistochemical detection of anti-oxidative stress enzymes in the dog brain. Neuropathology 17(4):307–312

    Article  Google Scholar 

  • Kimotsuki T, Nagaoka T, Yasuda M, Tamahara S, Matsuki N, Ono K (2005) Changes of magnetic resonance imaging on the brain in beagle dogs with aging. J Veterinary Med Sci 67(10):961–967

    Article  Google Scholar 

  • Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J (2006) Therapeutic approaches to Alzheimer’s disease. Brain 129(11):2840–2855

    Article  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24(45):10191–10200

    Article  CAS  PubMed  Google Scholar 

  • Lafleche G, Albert MS (1995) Executive function deficits in mild Alzheimer’s disease. Neuropsychology 9(3):313–320

    Article  Google Scholar 

  • Landsberg GM, Nichol J, Araujo JA (2012) Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Veterinary Clin N Am: Small Animal Pract 42(4):749–768

    Article  Google Scholar 

  • Libon DJ, Xie SX, Eppig J, Wicas G, Lamar M, Lippa C, Bettcher BM, Price CC, Giovannetti T, Swenson R, Wambach DM (2010) The heterogeneity of mild cognitive impairment: a neuropsychological analysis. J Int Neuropsychol Soc 16(1):84–93

    Article  PubMed  Google Scholar 

  • Libon DJ, Bondi MW, Price CC, Lamar M, Eppig J, Wambach DM, Nieves C, Delano-Wood L, Giovannetti T, Lippa C, Kabasakalian A, Cosentino S, Swenson R, Penney DL (2011) Verbal serial list learning in mild cognitive impairment: a profile analysis of interference, forgetting, and errors. J Int Neuropsychol Soc 17(5):905–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Linn RT, Wolf PA, Bachman DL, Knoefel JE, Cobb JL, Belanger AJ, Kaplan EF, D'Agostino RB (1995) The ‘preclinical phase’ of probable Alzheimer’s disease: a 13-year prospective study of the Framingham cohort. Archiv Neurol 52(5):485–490

    Article  CAS  Google Scholar 

  • Liu HL, Zhao G, Cai K, Zhao HH (2011) Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 218(2):308–314

    Article  PubMed  Google Scholar 

  • Marin DB, Green CR, Schmeidler J, Harvey PD, Lawlor BA, Ryan TM, Aryan M, Davis KL, Mohs RC (1997) Noncognitive disturbances in Alzheimer’s disease: frequency, longitudinal course, and relationship to cognitive symptoms. J Am Geriatrics Soc. 45(11):1331–1338

    Article  CAS  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol Med 23(1):134–147

    Article  CAS  Google Scholar 

  • Markesbery WR (2010) Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimer’s Dis 19(1):221–228

    Article  Google Scholar 

  • Matsui K, Taniguchi S, Yoshimura T (1999) Correlation of the intrinsic clearance of donepezil (Aricept®) between in vivo and in vitro studies in rat, dog and human. Xenobiotica 29(11):1059–1072

    Article  CAS  PubMed  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Milgram NW, Head E, Muggenburg B, Holowachuk D, Murphey H, Estrada J, Ikeda-Douglas CJ, Zicker SC, Cotman CW (2002a) Landmark discrimination learning in the dog: effects of age, an antioxidant fortified food, and cognitive strategy. Neurosci Biobehav Rev 26(6):679–695

    Article  PubMed  Google Scholar 

  • Milgram NW, Zicker SC, Head E, Muggenburg BA, Murphey H, Ikeda-Douglas CJ, Cotman CW (2002b) Dietary enrichment counteracts age-associated cognitive dysfunction in canines. Neurobiol Aging 23(5):737–745

    Article  CAS  PubMed  Google Scholar 

  • Milgram NW, Head E, Zicker SC, Ikeda-Douglas C, Murphey H, Muggenberg BA, Siwak CT, Tapp PD, Lowry SR, Cotman CW (2004) Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs. Exp Gerontol 39(5):753–765

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD) Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486

    Article  CAS  PubMed  Google Scholar 

  • Mongillo P, Araujo JA, Pitteri E, Carnier P, Adamelli S, Regolin L, Marinelli L (2013) Spatial reversal learning is impaired by age in pet dogs. Age 35(6):2273–2282

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris JC, Aisen PS, Bateman RJ, Benzinger TL, Cairns NJ, Fagan AM, Ghetti B, Goate AM, Holtzman DM, Klunk WE, McDade E (2012) Developing an international network for Alzheimer’s research: the Dominantly Inherited Alzheimer Network. Clin Investig 2(10):975–984

    Article  CAS  Google Scholar 

  • Morys J, Narkiewicz O, Maciejewska B, Wegiel J, Wisniewski HM (1994) Amyloid deposits and loss of neurones in the claustrum of the aged dog. Neuroreport 5(14):1825–1828

    Article  CAS  PubMed  Google Scholar 

  • Moulder KL, Snider BJ, Mills SL, Buckles VD, Santacruz AM, Bateman RJ, Morris JC (2013) Dominantly Inherited Alzheimer Network: facilitating research and clinical trials. Alzheimer’s Res Therapy 5(5):1

    Google Scholar 

  • Murphy MP, Morales J, Beckett TL, Astarita G, Piomelli D, Weidner A, Studzinski CM, Dowling AL, Wang X, LeVine H III, Kryscio RJ (2010) Changes in cognition and amyloid-β processing with long term cholesterol reduction using atorvastatin in aged dogs. J Alzheimer’s Dis 22(1):135–150

    Article  CAS  Google Scholar 

  • Norbury R, Travis MJ, Erlandsson K, Waddington W, Owens J, Pimlott S, Ell PJ, Murphy DGM (2005) In vivo imaging of muscarinic receptors in the aging female brain with (R, R)[123 I]-I-QNB and single photon emission tomography. Exp Gerontol 40(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Okuda R, Uchida K, Tateyama S, Yamaguchi R, Nakayama H, Goto N (1994) The distribution of amyloid beta precursor protein in canine brain. Acta Neuropathol 87(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Butterfield DA (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29(1):51–70

    Article  CAS  PubMed  Google Scholar 

  • Ott A, Breteler MM, Van Harskamp F, Claus JJ, Van Der Cammen TJ, Grobbee DE, Hofman A (1995) Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. BMJ 310(6985):970–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou N, Tooten PC, van Ederen AM, Bohl JR, Rofina J, Tsangaris T, Gruys E (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 8(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Parasuraman R, Greenwood PM, Alexander GE (1995) Selective impairment of spatial attention during visual search in Alzheimer’s disease. Neuroreport 6(14):1861–1864

    Article  CAS  PubMed  Google Scholar 

  • Pekcec A, Baumgärtner W, Bankstahl JP, Stein VM, Potschka H (2008) Effect of aging on neurogenesis in the canine brain. Aging Cell 7(3):368–374

    Article  CAS  PubMed  Google Scholar 

  • Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, Haroutunian V, Buxbaum JD, Nasland J, Davis K, Gotti C, Clementi F, Tzartos S, Cohen O, Soreq H, Jaros E, Perry R, Ballard C, McKeith I, Court J (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393(1):215–222

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC (1998) Clinical subtypes of Alzheimer’s disease. Dementia Geriatr Cognit Disorders 9(3):16–24

    Article  Google Scholar 

  • Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Int Med 256(3):183–194

    Article  CAS  Google Scholar 

  • Petersen RC, Morris JC (2005) Mild cognitive impairment as a clinical entity and treatment target. Archiv Neurol 62(7):1160–1163

    Article  Google Scholar 

  • Petersen RC, Smith GE, Ivnik RJ, Kokmen E, Tangalos EG (1994) Memory function in very early Alzheimer’s disease. Neurology 44(5):867–867

    Article  CAS  PubMed  Google Scholar 

  • Petrie EC, Cross DJ, Galasko D, Schellenberg GD, Raskind MA, Peskind ER, Minoshima S (2009) Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings. Archiv Neurol 66(5):632–637

    Article  Google Scholar 

  • Picciotto MR, Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53(4):641–655

    Article  CAS  PubMed  Google Scholar 

  • Pop V, Head E, Berchtold NC, Glabe CG, Studzinski CM, Weidner AM, Murphy MP, Cotman CW (2012) Aβ aggregation profiles and shifts in APP processing favor amyloidogenesis in canines. Neurobiol Aging. 33(1):108–120

    Article  CAS  PubMed  Google Scholar 

  • Portelius E, Van Broeck B, Andreasson U, Gustavsson MK, Mercken M, Zetterberg H, Borghys H, Blennow K (2010) Acute effect on the Aβ isoform pattern in CSF in response to γ-secretase modulator and inhibitor treatment in dogs. J Alzheimer’s Dis 21(3):1005–1012

    Article  CAS  Google Scholar 

  • Prior R, D'Urso D, Frank R, Prikulis I, Pavlakovic G (1996) Loss of vessel wall viability in cerebral amyloid angiopathy. Neuroreport 7(2):562–564

    Article  CAS  PubMed  Google Scholar 

  • Pugliese M, Mascort J, Mahy N, Ferrer I (2006) Diffuse beta-amyloid plaques and hyperphosphorylated tau are unrelated processes in aged dogs with behavioral deficits. Acta Neuropathol 112(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Pugliese M, Gangitano C, Ceccariglia S, Carrasco JL, Del Fà A, Rodríguez MJ, Michetti F, Mascort J, Mahy N (2007) Canine cognitive dysfunction and the cerebellum: acetylcholinesterase reduction, neuronal and glial changes. Brain Res 1139:85–94

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    PubMed  PubMed Central  Google Scholar 

  • Radák Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvári M, Nyakas C, Goto S (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38(1):17–23

    Article  PubMed  Google Scholar 

  • Ramani A, Jensen JH, Helpern JA (2006) Quantitative MR Imaging in Alzheimer Disease 1. Radiology 241(1):26–44

    Article  PubMed  Google Scholar 

  • Reid W, Broe G, Creasey H, Grayson D, McCusker E, Bennett H, Longley W, Sulway MR (1996) Age at onset and pattern of neuropsychological impairment in mild early-stage Alzheimer disease: a study of a community-based population. Archiv Neurol 53(10):1056–1061

    Article  CAS  Google Scholar 

  • Reinikainen KJ, Riekkinen PJ, Halonen T, Laakso M (1987) Decreased muscarinic receptor binding in cerebral cortex and hippocampus in Alzheimer’s disease. Life Sci 41(4):453–461

    Article  CAS  PubMed  Google Scholar 

  • Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 27(4):576–586

    Article  CAS  PubMed  Google Scholar 

  • Ritchie K, Touchon J (2000) Mild cognitive impairment: conceptual basis and current nosological status. Lancet 355(9199):225–228

    Article  CAS  PubMed  Google Scholar 

  • Rofina J, Andel IV, Van Ederen AM, Papaioannou N, Yamaguchi H, Gruys E (2003) Canine counterpart of senile dementia of the Alzheimer type: amyloid plaques near capillaries but lack of spatial relationship with activated microglia and macrophages. Amyloid 10(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Rofina JE, Singh K, Skoumalova-Vesela A, van Ederen AM, van Asten AJ, Wilhelm J, Gruys E (2004) Histochemical accumulation of oxidative damage products is associated with Alzheimer-like pathology in the canine. Amyloid 11(2):90–100

    Article  CAS  PubMed  Google Scholar 

  • Rofina JE, Van Ederen AM, Toussaint MJM, Secreve M, Van Der Spek A, Van Der Meer I, Van Eerdenburg FJCM, Gruys E (2006) Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease. Brain Res 1069(1):216–226

    Article  CAS  PubMed  Google Scholar 

  • Rolland Y, Pillard F, Klapouszczak A, Reynish E, Thomas D, Andrieu S, Rivière D, Vellas B (2007) Exercise program for nursing home residents with Alzheimer’s disease: a 1-year randomized, controlled trial. J Am Geriatr Soc 55(2):158–165

    Article  PubMed  Google Scholar 

  • Rose S, de Zubicaray G, Wang D, Galloway G, Chalk J, Eagle S, Semple J, Doddrell D (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Res Imag 17(2):291–299

    Article  CAS  Google Scholar 

  • Rossor M, Iversen LL (1986) Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Br Med Bullet 42(1):70–74

    Article  CAS  Google Scholar 

  • Russell MJ, White R, Patel E, Markesbery WR, Watson CR, Geddes JW (1992) Familial influence on plaque formation in the beagle brain. Neuroreport 3(12):1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1(1):13–21

    Article  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  CAS  PubMed  Google Scholar 

  • Schmidt F, Boltze J, Jäger C, Hofmann S, Willems N, Seeger J, Härtig W, Stolzing A (2015) Detection and Quantification of β-Amyloid, Pyroglutamyl Aβ, and Tau in Aged Canines. J Neuropathol Exp Neurol 74(9):912–923

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271(31):18295–18298

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235(4791):873–877

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM, Korecka M, Clark CM, Lee VMY, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6(4):295–303

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159(2):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Siwak CT, Tapp PD, Milgram NW (2001) Effect of age and level of cognitive function on spontaneous and exploratory behaviors in the beagle dog. Learning Memory 8(6):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siwak CT, Tapp PD, Zicker SC, Murphey HL, Muggenburg BA, Head E, Cotman CW, Milgram NW (2003) Locomotor activity rhythms in dogs vary with age and cognitive status. Behav Neurosci 117(4):813

    Article  PubMed  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2007) Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learn Memory 88(2):249–259

    Article  CAS  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2008) Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol Aging 29(1):39–50

    Article  PubMed  Google Scholar 

  • Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J (2003) The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. Exp Gerontol 38(6):711–719

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochem Biophys Acta Mol Basis Dis 1502(1):139–144

    Article  CAS  Google Scholar 

  • Smolek T, Madari A, Farbakova J, Kandrac O, Jadhav S, Cente M, Brezovakova V, Zilka N (2016) Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comparative Neurol 524(4):874–895

    Article  CAS  Google Scholar 

  • Snigdha S, Christie LA, De Rivera C, Araujo JA, Milgram NW, Cotman CW (2012) Age and distraction are determinants of performance on a novel visual search task in aged beagle dogs. Age 34(1):67–73

    Article  PubMed  Google Scholar 

  • Snigdha S, de Rivera C, Milgram NW, Cotman C (2014) Exercise enhances memory consolidation in the aging brain. Front Aging Neurosci 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR, Kaye J, Montine TJ, Park DC (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3):280–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Studzinski CM, Araujo JA, Milgram NW (2005) The canine model of human cognitive aging and dementia: pharmacological validity of the model for assessment of human cognitive-enhancing drugs. Progr Neuro-Psychopharmacol Biol Psychiatr 29(3):489–498

    Article  CAS  Google Scholar 

  • Studzinski CM, Christie LA, Araujo JA, Burnham WM, Head E, Cotman CW, Milgram NW (2006) Visuospatial function in the beagle dog: an early marker of cognitive decline in a model of human aging and dementia. Neurobiol Learning Memory 86(2):197–204

    Article  Google Scholar 

  • Su MY, Head E, Brooks WM, Wang Z, Muggenburg BA, Adam GE, Sutherland R, Cotman CW, Nalcioglu O (1998) Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging 19(5):479–485

    Article  CAS  PubMed  Google Scholar 

  • Su MY, Tapp PD, Vu L, Chen YF, Chu Y, Muggenburg B, Chiou JY, Chen C, Wang J, Bracco C, Head E (2005) A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Progr Neuro-Psychopharmacol Biol Psychiatry 29(3):389–397

    Article  Google Scholar 

  • Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C, Vlassenko AG, Benzinger TL, Stoops EE, Vanderstichele HM, Brix B, Darby HD (2015) Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol 72(9):1029–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapp PD, Siwak CT, Head E, Cotman CW, Milgram NW (2001) Sex differences in the effect of oestrogen on size discrimination learning and spatial memory. In: Proceedings of the Third International Congress on Veterinary Behavioral Medicine. Universities Federation for Animal Welfare, Wheathamstead, pp 136–138

    Google Scholar 

  • Tapp PD, Siwak CT, Estrada J, Head E, Muggenburg BA, Cotman CW, Milgram NW (2003) Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging. Learning Memory. 10(1):64–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapp PD, Siwak CT, Gao FQ, Chiou JY, Black SE, Head E, Muggenburg BA, Cotman CW, Milgram NW, Su MY (2004) Frontal lobe volume, function, and β-amyloid pathology in a canine model of aging. J Neurosci 24(38):8205–8213

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800

    Article  PubMed  Google Scholar 

  • Tolboom N, van der Flier WM, Yaqub M, Boellaard R, Verwey NA, Blankenstein MA, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BN (2009) Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med 50(9):1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35(3):352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torp R, Head E, Cotman CW (2000a) Ultrastructural analyses of β-amyloid in the aged dog brain: Neuronal β-amyloid is localized to the plasma membrane. Progr Neuro-Psychopharmacol Biol Psychiatry 24(5):801–810

    Article  CAS  Google Scholar 

  • Torp R, Head E, Milgram NW, Hahn F, Ottersen OP, Cotman CW (2000b) Ultrastructural evidence of fibrillar β-amyloid associated with neuronal membranes in behaviorally characterized aged dog brains. Neuroscience 96(3):495–506

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Nakayama H, Goto N (1991) Pathological studies on cerebral amyloid angiopathy senile plaques and amyloid deposition in visceral organs in aged dogs. J Veterinary Med Sci 53(6):1037–1042

    Article  CAS  Google Scholar 

  • Uchida K, Tani Y, Uetsuka K, Nakayama H, Goto N (1992) Immunohistochemical studies on canine cerebral amyloid angiopathy and senile plaques. J Veterinary Med Sci 54(4):659–667

    Article  CAS  Google Scholar 

  • Uzun S, Kozumplik O, Folnegović-Šmalc V (2011) Alzheimer’s dementia: current data review. Colleg Antropol 35(4):1333–1337

    CAS  Google Scholar 

  • Van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci 96(23):13427–13431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandevelde M, Higgins R, Oevermann A (2012) Veterinary neuropathology: essentials of theory and practice. Wiley, New York

    Google Scholar 

  • Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer’s Disease Neuroimaging Initiative (2009a) MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73(4):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer’s Disease Neuroimaging Initiative (2009b) MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73(4):294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, Bernstein MA, Aisen PS, Weiner M, Petersen RC, Jack CR (2010) Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology 75(2):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeff NPLG, Wilson AA, Nobrega J, Milgram NW, Westaway D, Head E, Hussey D, Tapp D, Trop L, Giuliano F, Araujo J, Ginovart N, Richardson L, Singh K, Houle S (2003) Development of positron emission tomography (PET) tracers for beta-amyloid imaging in vivo. J Cerebral Blood Flow Metab 23(1):685

    Google Scholar 

  • Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC (2013) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer’s Dementia 9(5):111–194

    Article  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski H, Johnson AB, Raine CS, Kay WJ, Terry RD (1970) Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study. Lab Investig 23:287–296

    CAS  PubMed  Google Scholar 

  • Wisniewski HM, Wegiel J, Morys J, Bancher C, Soltysiak Z, Kim KS (1990) Aged dogs: an animal model to study beta-protein amyloidogenesis. In: Alzheimer’s disease. Epidemiology, neuropathology, neurochemistry, and clinics. Springer, Vienna, pp 151–168

    Chapter  Google Scholar 

  • World Health Organization (2012) Dementia: a public health priority. World Health Organization, Geneva

    Google Scholar 

  • Yoshino T, Uchida K, Tateyama S, Yamaguchi R, Nakayama H, Goto N (1996) A retrospective study of canine senile plaques and cerebral amyloid angiopathy. Veterinary Pathol Online 33(2):230–234

    Article  CAS  Google Scholar 

  • Yu CH, Song GS, Yhee JY, Kim JH, Im KS, Nho WG, Lee JH, Sur JH (2011) Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction. J Comparative Pathol 145(1):45–58

    Article  CAS  Google Scholar 

  • Zahs KR, Ashe KH (2010) ‘Too much good news’–are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease? Trends Neurosci 33(8):381–389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Araujo, J.A., Baulk, J., de Rivera, C. (2017). The Aged Dog as a Natural Model of Alzheimer’s Disease Progression. In: Landsberg, G., Maďari, A., Žilka, N. (eds) Canine and Feline Dementia. Springer, Cham. https://doi.org/10.1007/978-3-319-53219-6_4

Download citation

Publish with us

Policies and ethics