Skip to main content

Pulse Control Strategies

  • Chapter
  • First Online:
Infectious Disease Modeling

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 19))

  • 1830 Accesses

Abstract

Building upon the previous chapter, impulsive control in epidemic models is formulated and analyzed in this part. Pulse vaccination, which is the control technique of applying vaccinations to a portion of the susceptible population in a relatively short time period (with respect to the dynamics of the disease) is considered. This is applied to the switched SIR model previously set forth in this monograph, along with pulse treatment strategies. Complications such as general switched incidence rates, vaccine failures, media coverage, and traveling individuals are considered. Conditions are found which guarantee eradication under the pulse schemes and an evaluation and comparison of control strategies (switching and impulsive) is performed in the context of a general vector-borne disease model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Agur, L. Cojocaru, G. Mazor, R.M. Anderson, Y.L. Danon, Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. 90 (24), 11698–11702 (1993)

    Article  Google Scholar 

  2. A. d’Onofrio, Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Model. 36 (4–5), 473–489 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. d’Onofrio, Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). Appl. Math. Comput. 168, 613–622 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Y. Dumont, F. Chiroleu, Vector control for the chikungunya disease. Math. Biosci. Eng. 7 (2), 313–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Gao, L. Chen, J.J. Nieto, A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (35–36), 6037–6045 (2006)

    Article  Google Scholar 

  6. S. Gao, L. Chen, Z. Teng, Pulse vaccination of an SEIR epidemic model with time delay. Nonlinear Anal. Real World Appl. 9 (2), 599–607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Z.-H. Guan, D. Hill, X. Shen, On hybrid impulsive and switching systems and application to nonlinear control. IEEE Trans. Automat. Control 50 (7), 1058–1062 (2005)

    Article  MathSciNet  Google Scholar 

  8. Z.-H. Guan, D. Hill, J. Yao, A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to Chua’s chaotic circuit. Int. J. Bifurcation Chaos 16 (1), 229–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. He, S. Gao, D. Xie, An SIR epidemic model with time-varying pulse control schemes and saturated infectious force. Appl. Math. Model. 37 (16–17), 8131–8140 (2013)

    Article  MathSciNet  Google Scholar 

  10. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42 (4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  12. Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (5), 2353–2365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Liu, X. Liu, W.-C. Xie, Extending LaSalle’s invariance principle to impulsive switched systems with an application to hybrid epidemic dynamics, in 2010 Chinese Control and Decision Conference (2010), pp. 136–141

    Google Scholar 

  14. S. Liu, Y. Pei, C. Li, L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission. Appl. Math. Model. 33 (4), 1923–1932 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Liu, P. Stechlinski, Pulse and constant control schemes for epidemic models with seasonality. Nonlinear Anal. Real World Appl. 12 (2), 931–946 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Liu, P. Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate. Appl. Math. Model. 36 (5), 1974–1994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Liu, P. Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections. Nonlinear Anal. Real World Appl. 14, 264–279 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Liu, P. Stechlinski, SIS models with switching and pulse control. J. Appl. Math. Comput. 232, 727–742 (2014)

    Article  MathSciNet  Google Scholar 

  19. Z. Lu, X. Chi, L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36, 1039–1057 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.D. Meiss, Differential Dynamical Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  21. X. Meng, L. Chen, The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl. Math. Comput. 197 (2), 582–597 (2008)

    MathSciNet  MATH  Google Scholar 

  22. L. Nagy, Epidemic models with pulse vaccination and time delay. Master’s thesis, University of Waterloo, Waterloo, ON, Canada (2011)

    Google Scholar 

  23. L. Nie, Z. Teng, A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Anal. Real World Appl. 13, 1621–1629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Pang, L. Chen, A delayed SIRS epidemic model with pulse vaccination. Chaos Solitons Fractals 34 (5), 1629–1635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Shulgin, L. Stone, Z. Agur, Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60, 1123–1148 (1998)

    Article  MATH  Google Scholar 

  26. B. Shulgin, L. Stone, Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Model. 31, 207–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Stechlinski, X. Liu, Switching vaccination schemes for vector-borne diseases with seasonal fluctuations. Submitted (2016)

    Google Scholar 

  28. F. van den Berg, N. Bacaër, J. Metz, C. Lannou, F. van den Bosch, Periodic host absence can select for higher or lower parasite transmission rates. Evol. Ecol. 25, 121–137 (2011)

    Article  Google Scholar 

  29. Y. Yang, Y. Xiao, The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model. 52 (9–10), 1591–1604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Zhang, X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal. Real World Appl. 10 (2), 565–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Zhou, H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38 (3–4), 299–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, X., Stechlinski, P. (2017). Pulse Control Strategies. In: Infectious Disease Modeling. Nonlinear Systems and Complexity, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-53208-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53208-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53206-6

  • Online ISBN: 978-3-319-53208-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics