Skip to main content

Conclusions and Outlook

  • Chapter
  • First Online:
Quantum Systems under Gravitational Time Dilation

Part of the book series: Springer Theses ((Springer Theses))

  • 761 Accesses

Abstract

Quantum effects have been demonstrated with complex systems comprising tens of thousands of atoms [1,2,3,4,5]. The regime where general relativity affects internal dynamics of such systems might soon allow testing the interplay between quantum mechanics and general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  2. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004)

    Article  ADS  Google Scholar 

  3. S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  4. S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen, Matter-wave interference of particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013)

    Article  Google Scholar 

  5. P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, M. Arndt, A universal matter-wave interferometer with optical ionization gratings in the time domain. Nat. Phys. 9, 144–148 (2013)

    Article  Google Scholar 

  6. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  7. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. L. Diósi, Intrinsic time-uncertainties and decoherence: comparison of 4 models. Braz. J. Phys. 35, 260265 (2005)

    Article  Google Scholar 

  9. P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)

    Article  ADS  Google Scholar 

  10. D. Rideout, T. Jennewein, G. Amelino-Camelia, T.F. Demarie, B.L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R.B. Mann et al., Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quantum Gravity 29, 224011 (2012)

    Article  ADS  Google Scholar 

  11. T. Scheidl, R. Ursin, Space-QUEST: quantum communication using satellites. in Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Ajaccio, Corsica, France, 2012, pp. 2–4 (2012)

    Google Scholar 

  12. T. Scheidl, E. Wille, R. Ursin, Quantum optics experiments using the international space station: a proposal. New J. Phys. 15, 043008 (2013)

    Article  ADS  Google Scholar 

  13. G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, P. Villoresi, Experimental satellite quantum communications. Phys. Rev. Lett. 115, 040502 (2014)

    Article  Google Scholar 

  14. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  15. C. Gooding, W.G. Unruh, Self-gravitating interferometry and intrinsic decoherence. Phys. Rev. D 90, 044071 (2014)

    Article  ADS  Google Scholar 

  16. C. Gooding, W.G. Unruh, Bootstrapping time dilation decoherence. Found. Phys. 45, 1166–1178 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. O. Oreshkov, F.M. Costa, Č. Brukner, Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)

    Google Scholar 

  18. T. Rudolph, Quantum causality: information insights. Nat. Phys. 8, 860–861 (2012)

    Article  Google Scholar 

  19. Č. Brukner, Quantum causality. Nat. Phys. 10, 259–263 (2014)

    Google Scholar 

  20. L. Hardy, Probability theories with dynamic causal structure: a new framework for quantum gravity. arXiv:0509120 [gr-qc]

  21. G. Chiribella, G.M. DAriano, P. Perinotti, B. Valiron, Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)

    Google Scholar 

  22. G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)

    Article  ADS  Google Scholar 

  23. T. Colnaghi, G.M.D. Ariano, S. Facchini, P. Perinotti, Quantum computation with programmable connections between gates. Phys. Lett. A 376, 2940–2943 (2012)

    Article  ADS  MATH  Google Scholar 

  24. M. Araújo, F. Costa, Č. Brukner, Computational advantage from Quantum-Controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zych .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zych, M. (2017). Conclusions and Outlook. In: Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53192-2_9

Download citation

Publish with us

Policies and ethics