Skip to main content

Decoherence from Time Dilation

  • Chapter
  • First Online:
Quantum Systems under Gravitational Time Dilation

Part of the book series: Springer Theses ((Springer Theses))

  • 762 Accesses

Abstract

This chapter generalises the discussion of time dilation effects on “clocks”—quantum systems whose internal states are pure and time evolving (Chap. 5)—to systems in an arbitrary internal state.

This chapter builds upon and Sects. 6.3, 6.4 contain material from Universal decoherence due to gravitational time dilation, I. Pikovski, M. Zych, F. Costa, and Č. Brukner, Nat. Phys. 8, 668–672 (2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, in Selected Papers (Springer, Berlin, Heidelberg, 1991), pp. 115–123

    Google Scholar 

  2. G. Fleming, A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A 16, 232–240 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and Consumption

    Google Scholar 

  4. P. Kosiński, M. Zych, Elementary proof of the bound on the speed of quantum evolution. Phys. Rev. A 73, 024303 (2006)

    Article  ADS  Google Scholar 

  5. B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)

    Article  ADS  Google Scholar 

  6. S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen, Matter-wave interference of particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013)

    Article  Google Scholar 

  7. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ, Press, 2002)

    MATH  Google Scholar 

  8. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  9. T. Li, S. Kheifets, M.G. Raizen, Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)

    Article  Google Scholar 

  10. J. Gieseler, B. Deutsch, R. Quidant, L. Novotny, Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012)

    Article  ADS  Google Scholar 

  11. N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, M. Aspelmeyer, Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. 110, 14180–14185 (2013)

    Article  ADS  Google Scholar 

  12. P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, M. Arndt, Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 4, 2743 (2013)

    Article  ADS  Google Scholar 

  13. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. Van Den Brink, D. Bouwmeester, Creating and verifying a quantum superposition in a micro-optomechanical system. New J. Phys. 10, 095020 (2008)

    Article  ADS  Google Scholar 

  15. B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, D. Bouwmeester, Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109, 023601 (2012)

    Article  ADS  Google Scholar 

  16. I. Pikovski, On Quantum Superpositions in an Optomechanical System. Diploma Thesis (Freie Universität Berlin, 2009)

    Google Scholar 

  17. E. Joos, H.D. Zeh, The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condens. Matter 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  18. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004)

    Article  ADS  Google Scholar 

  19. I. Pikovski, M. Zych, F. Costa, Č. Brukner, Universal decoherence due to gravitational time dilation. Nat. Phys. 11, 668–672 (2015)

    Article  Google Scholar 

  20. R. Colella, A. Overhauser, S. Werner, Observation of Gravitationally Induced Quantum Interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  21. M. Zawisky, M. Baron, R. Loidl, H. Rauch, Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Methods Phys. Res., Sect. A 481, 406–413 (2002)

    Article  ADS  Google Scholar 

  22. S. Chu, Laser manipulation of atoms and particles. Science 253, 861–866 (1991)

    Article  ADS  Google Scholar 

  23. T. Kovachy, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson, A. Sugarbaker, J. Hogan, M. Kasevich, Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015)

    Article  ADS  Google Scholar 

  24. S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  25. E. Joos, H. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, Heidelberg, 2010)

    MATH  Google Scholar 

  26. W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M.A. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, 2007)

    Google Scholar 

  28. A.O. Caldeira, A.J. Leggett, Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Appl. 121, 587–616 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.J. Leggett, S. Chakravarty, A. Dorsey, M.P. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  30. T. Yu, J. Eberly, Phonon decoherence of quantum entanglement: robust and fragile states. Phys. Rev. B 66, 193306 (2002)

    Article  ADS  Google Scholar 

  31. S. Takahashi, I. Tupitsyn, J. Van Tol, C. Beedle, D. Hendrickson, P. Stamp, Decoherence in crystals of quantum molecular magnets. Nature 476, 76–79 (2011)

    Article  Google Scholar 

  32. M.R. Gallis, G.N. Fleming, Environmental and spontaneous localization. Phys. Rev. A 42, 38 (1990)

    Article  ADS  Google Scholar 

  33. N. Prokof’ev, P. Stamp, Theory of the spin bath. Rep. Prog. Phys. 63, 669 (2000)

    Article  ADS  Google Scholar 

  34. R. Hanson, V. Dobrovitski, A. Feiguin, O. Gywat, D. Awschalom, Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008)

    Article  ADS  Google Scholar 

  35. T. Carle, H. Briegel, B. Kraus, Decoherence of many-body systems due to many-body interactions. Phys. Rev. A 84, 012105 (2011)

    Article  ADS  Google Scholar 

  36. C. Anastopoulos, Quantum theory of nonrelativistic particles interacting with gravity. Phys. Rev. D 54, 1600 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Lamine, R. Hervé, A. Lambrecht, S. Reynaud, Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006)

    Article  ADS  Google Scholar 

  38. M. Blencowe, Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013)

    Article  ADS  Google Scholar 

  39. C. Anastopoulos, B. Hu, A master equation for gravitational decoherence: probing the textures of spacetime. Class. Quantum Gravity 30, 165007 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  42. P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  43. G.C. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cimento A 42, 390–402 (1966)

    Article  ADS  Google Scholar 

  45. P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zych .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zych, M. (2017). Decoherence from Time Dilation. In: Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53192-2_6

Download citation

Publish with us

Policies and ethics