Skip to main content

Quantum Clocks in General Relativity

  • Chapter
  • First Online:
Quantum Systems under Gravitational Time Dilation

Part of the book series: Springer Theses ((Springer Theses))

  • 775 Accesses

Abstract

This chapter derives and discusses quantisation of the relativistic “clock” Hamiltonian, providing dynamics of low energy quantum systems with internal degrees of freedom in a fixed background.

Section 3.2 contains material from Quantum formulation of the Einstein Equivalence Principle, M. Zych and Č. Brukner, arXiv:1502.00971 (2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mass energy equivalence—the change of the mass of the particle by \(\delta E/c^2\) when its internal energy changes by \(\delta E\)—is currently verified up the precision of \(10^{-7}\) [4].

  2. 2.

    Recall that unitary representation of \(g_\alpha \in \mathcal G\) (a transformation parametrised by \(\alpha \)) generated by an operator G reads \(U=e^{{ \textstyle -i\alpha G/\hbar }}\).

  3. 3.

    Equivalence of the two pictures in classical physics was rooted in the fact that a constant generator does not induce any transformation. This is in full agreement with the quantum case, since the diagonal elements of a density operator of a quantum system can be seen as classical states.

  4. 4.

    For example, an equal superposition of eigenstates with different energies, with an energy gap \(\Delta E\), evolves between mutually orthogonal states at a rate proportional to \(\hbar /\Delta E\), [9,10,11,12,13], see also Chap. 4.

References

  1. S. Weinberg, The Quantum Theory of Fields, vol. 2. (Cambridge University Press, 1996)

    Google Scholar 

  2. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. No. 7. (Cambridge university press, 1984)

    Google Scholar 

  3. C. Laemmerzahl, A Hamilton operator for quantum optics in gravitational fields. Phys. Lett. A 203, 12–17 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Borner, M. Jentschel, P. Mutti, D.E. Pritchard, World year of physics: a direct test of E = mc\(^2\). Nature 438, 1096–1097 (2005)

    Article  ADS  Google Scholar 

  5. V. Bargmann, On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-M. Levy-Leblond, Galilei group and nonrelativistic quantum mechanics. J. Math. Phys. 4, 776–788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. Giulini, On Galilei invariance in quantum mechanics and the Bargmann superselection rule. Ann. Phys. 249, 222–235 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D.M. Greenberger, Inadequacy of the usual Galilean transformation in quantum mechanics. Phys. Rev. Lett. 87, 100405 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, in Selected Papers (Springer Berlin Heidelberg, 1991), pp. 115–123

    Google Scholar 

  10. G. Fleming, A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A 16, 232–240 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom.120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and Consumption

    Google Scholar 

  12. B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)

    Article  ADS  Google Scholar 

  13. B.-G. Englert, Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zych .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zych, M. (2017). Quantum Clocks in General Relativity. In: Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53192-2_3

Download citation

Publish with us

Policies and ethics