Skip to main content

Wheat Allelopathy for Weed Control

  • Chapter
  • First Online:
Manipulation of Allelopathic Crops for Weed Control

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Wheat (Triticum aestivum L.) is among the most important crops of the world and provides food, feed, and several by-products. Other than this, wheat is among the crops that express a strong allelopathic activity. Benzoxazinoids and phenolic compounds are the most important allelochemicals reported in wheat. Allelopathic cultivars of wheat may be grown to suppress weeds in the wheat crop. Allelopathic mulch of wheat can be applied for suppressing weeds both in wheat and other field crops. Several cultivars of wheat with an allelopathic potential have been reported from various countries of the world. Research work conducted to improve the allelopathic potential of wheat has been insufficient. Future research should focus on improving the allelopathic potential of wheat cultivars through conventional and molecular breeding as well as biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Hamdi, B., Olofsdotter, M., & Streibig, J. C. (2001). Laboratory bioassay for phytotoxicity. Agronomy Journal, 93, 43–48.

    CAS  Google Scholar 

  • Anderson, R. L. (1993). Crop residue reduces jointed goatgrass (Aegilops cylindrica) seedling growth. Weed Technology, 7, 717–722.

    CAS  Google Scholar 

  • Baghestani, A., Lemieux, C., Leroux, G. D., Baziramakenga, R., & Simard, R. R. (1999). Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Science, 47, 498–504.

    CAS  Google Scholar 

  • Belz, R. G., & Hurle, K. (2005). Differential exudation of two benzoxazinoids one of the determining factors for seedling allelopathy of Triticeae species. Journal of Agricultural and Food Chemistry, 53, 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Bensch, T., Schalchli, S., Jobet, F., Seemann, F., & Fuentes, P. (2009). The differential allelopatic potential of Chilean wheat cultivars (Triticum aestivum L.) on different weeds associated with this culture in south Chile. IDESIA, 27, 77–88.

    Article  Google Scholar 

  • Bertholdsson, N. O. (2005). Early vigour and allelopathy–two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Research, 45, 94–102.

    Article  Google Scholar 

  • Bertholdsson, N. O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Research, 50, 49–57.

    Article  Google Scholar 

  • Blum, U., Wentworth, T., Klein, K., Worsham, A., King, L., Gerig, T., et al. (1991). Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. Journal of Chemical Ecology, 17, 1045–1068.

    Article  CAS  PubMed  Google Scholar 

  • Blum, U., Gerig, T., Worsham, A., Holappa, L., & King, L. (1992). Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. Journal of Chemical Ecology, 18, 2191–2221.

    Article  CAS  PubMed  Google Scholar 

  • FAO. (2014). Food and Agriculture Organization of the United Nations. Retrieved December 16, 2016, from http://www.fao.org/faostat/en/#data/QC/visualize

  • Farooq, M., Flower, K., Jabran, K., Wahid, A., & Siddique, K. H. (2011a). Crop yield and weed management in rainfed conservation agriculture. Soil and Tillage Research, 117, 172–183.

    Article  Google Scholar 

  • Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., & Siddique, K. H. (2011b). The role of allelopathy in agricultural pest management. Pest Management Science, 67, 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Flood, H. E., & Entz, M. H. (2009). Effects of wheat, triticale and rye plant extracts on germination of navy bean (Phaseolus vulgaris) and selected weed species. Canadian Journal of Plant Science, 89, 999–1002.

    Article  Google Scholar 

  • Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Allelopathy (pp. 349–385). Berlin: Springer.

    Chapter  Google Scholar 

  • Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65.

    Article  Google Scholar 

  • Kashif, M. S., Cheema, Z. A., & Farooq, M. (2015). Allelopathic interaction of wheat (Triticum aestivum) and littleseed canarygrass (Phalaris minor). International Journal of Agriculture & Biology, 17, 363‒368.

    Google Scholar 

  • Khaliq, A., Matloob, A., Aslam, F., & Bismillah Khan, M. (2011). Influence of wheat straw and rhizosphere on seed germination, early seedling growth and bio-chemical attributes of Trianthema portulacastrum. Planta Daninha, 29, 523–533.

    Article  Google Scholar 

  • Krogh, S. S., Mensz, S. J., Nielsen, S. T., Mortensen, A. G., Christophersen, C., & Fomsgaard, I. S. (2006). Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. Journal of Agricultural and Food Chemistry, 54, 1064–1074.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. J., Wang, G. Q., Li, B. H., & Blackshaw, R. (2005). Allelopathic effects of winter wheat residues on germination and growth of crabgrass (Digitaria ciliaris) and corn yield. Allelopathy Journal, 15, 41–48.

    Google Scholar 

  • Li, C., An, M., Saeed, M., Li, L., & Pratley, J. (2011). Effects of wheat crop density on growth of ryegrass. Allelopathy Journal, 27, 43–54.

    Google Scholar 

  • Lodhi, M., Bilal, R., & Malik, K. (1987). Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop rotation. Journal of Chemical Ecology, 13, 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C., Liu, X., Xu, J., Dong, F., Zhang, C., Tian, Y., & Zheng, Y. (2012). Enhanced exudation of DIMBOA and MBOA by wheat seedlings alone and in proximity to wild oat (Avena fatua) and flixweed (Descurainia sophia). Weed Science, 60, 360–365.

    Article  CAS  Google Scholar 

  • Macías, F. A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A. M., & Molinillo, J. M. (2005). Degradation studies on benzoxazinoids. Soil degradation dynamics of (2 R)-2-O-β-d-glucopyranosyl-4-hydroxy-(2 H)-1, 4-benzoxazin-3 (4 H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. Journal of Agricultural and Food Chemistry, 53, 554–561.

    Article  PubMed  Google Scholar 

  • Mardani, R., Yousefi, A. R., Fotovat, R., & Oveisi, M. (2014). New bioassay method to find the allelopathic potential of wheat cultivars on rye (Secale cereale L.) seedlings. Allelopathy Journal, 33, 53.

    Google Scholar 

  • Mathiassen, S. K., Kudsk, P., & Mogensen, B. B. (2006). Herbicidal effects of soil-incorporated wheat. Journal of Agricultural and Food Chemistry, 54, 1058–1063.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, H. (2007). Identification of L-tryptophan as an allelochemical in wheat bran extract. Allelopathy Journal, 19, 461–467.

    Google Scholar 

  • Nakano, H., Morita, S., Shigemori, H., & Hasegawa, K. (2006). Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regulation, 48, 215–219.

    CAS  Google Scholar 

  • Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Om, H., Dhiman, S., Kumar, S., & Kumar, H. (2002). Allelopathic response of Phalaris minor to crop and weed plants in rice–wheat system. Crop Protection, 21, 699–705.

    Article  Google Scholar 

  • Opoku, G., Vyn, T., & Voroney, R. (1997). Wheat straw placement effects on total phenolic compounds in soil and corn seedling growth. Canadian Journal of Plant Science, 77, 301–305.

    Article  Google Scholar 

  • Schalchli, H., Pardo, F., Hormazábal, E., Palma, R., Guerrero, J., & Bensch, E. (2012). Antifungal activity of wheat root exudate extracts on Gaeumannomyces graminis var. Tritici growth. Journal of Soil Science and Plant Nutrition, 12, 329–337.

    Article  Google Scholar 

  • Schuerger, A. C., & Laible, P. D. (1994). Biocompatibility of wheat and tomato in a dual culture hydroponic system. Horticultural Science, 29, 1164–1165.

    Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (2000a). Allelochemicals in wheat (Triticum A estivum L.): Variation of phenolic acids in root tissues. Journal of Agricultural and Food Chemistry, 48, 5321–5325.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2000b). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Crop & Pasture Science, 51, 937–944.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (2000c). Distribution and exudation of allelochemicals in wheat Triticum aestivum. Journal of Chemical Ecology, 26, 2141–2154.

    Article  CAS  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2000d). Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Crop & Pasture Science, 51, 259–266.

    Article  Google Scholar 

  • Wu, H., Pratley, J., & Haig, T. (2003). Phytotoxic effects of wheat extracts on a herbicide-resistant biotype of annual ryegrass (Lolium rigidum). Journal of Agricultural and Food Chemistry, 51, 4610–4616.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., An, M., & Li Liu, D. (2007). Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant and Soil, 296, 85–93.

    Article  CAS  Google Scholar 

  • Zhang, S. Z., Li, Y. H., Kong, C. H., & Xu, X. H. (2016). Interference of allelopathic wheat with different weeds. Pest Management Science, 72, 172–178.

    Article  PubMed  Google Scholar 

  • Zheng, Y., Liu, X., Dong, F., Li, J., Gong, Y., & Zhu, G. (2010). Biological induction of DIMBOA in wheat seedlings by weeds. Allelopathy Journal, 25, 433–440.

    Google Scholar 

  • Zuo, S., Ma, Y., Deng, X., & Li, X. (2005). Allelopathy in wheat genotypes during the germination and seedling stages. Allelopathy Journal, 15, 21–30.

    Google Scholar 

  • Zuo, S., Ma, Y., & Inanaga, S. (2007). Allelopathy variation in dryland winter wheat (Triticum aestivum L.) accessions grown on the Loess Plateau of China for about fifty years. Genetic Resources and Crop Evolution, 54, 1381–1393.

    Article  Google Scholar 

  • Zuo, S., Wang, H., & Ma, Y. (2008). Sawtooth effects in wheat stubbles allelopathy. Allelopathy Journal, 21, 287–298.

    Google Scholar 

  • Zuo, S., Liu, G., & Li, M. (2012). Genetic basis of allelopathic potential of winter wheat based on the perspective of quantitative trait locus. Field Crops Research, 135, 67–73.

    Article  Google Scholar 

  • Zuo, S., Li, X., Ma, Y., & Yang, S. (2014). Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant and Soil, 378, 49–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Jabran, K. (2017). Wheat Allelopathy for Weed Control. In: Manipulation of Allelopathic Crops for Weed Control. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-53186-1_2

Download citation

Publish with us

Policies and ethics