Skip to main content

Allelopathy: Introduction and Concepts

  • Chapter
  • First Online:
Manipulation of Allelopathic Crops for Weed Control

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Plants communicate and influence the growth of other plants (or even microorganisms) through excretion of certain chemical compounds (allelochemicals). The process is called allelopathy. A number of allelochemicals have been reported from different plant species. Most important allelochemicals/allelochemical groups in major field crops (those focused in this book) may include phenolic compounds, benzoxazinoids, sorgoleone, glucosinolates, terpenes, alkaloids, and momilactones. The allelopathic potential of field crops may be utilized for controlling weeds without importing weed control agent into the field. This is possible through channelizing the allelopathic activity of field crops for controlling weeds in form of several techniques. Most importantly, these techniques may include growing the crop cultivars that possess an allelopathic potential. The other important ways may include intercropping of a crop possessing an allelopathic potential with a crop without allelopathic activity [e.g., intercropping of sorghum (Sorghum bicolor (L.) Moench) in cotton (Gossypium hirsutum L.)], including a crop possessing an allelopathic activity in a crop rotation, use of residues from an allelopathic crop as mulch, and use of an allelopathic crop as cover crop for controlling weeds. Most important in future research include determining the mode of action of allelochemicals and their formulation into a commercial weed control product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., Smart, L., et al. (2011). Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 157, 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliki, H. M., Reade, J. P., & Back, M. A. (2014). Effects of concentrations of Brassica napus (L.) water extracts on the germination and growth of weed species. Allelopathy Journal, 34, 287.

    Google Scholar 

  • Alsaadawi, I. S., & Dayan, F. E. (2009). Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopathy Journal, 24, 255–270.

    Google Scholar 

  • Al-Sherif, E., Hegazy, A., Gomaa, N., & Hassan, M. (2013). Allelopathic effect of black mustard tissues and root exudates on some crops and weeds. Planta Daninha, 31, 11–19.

    Article  Google Scholar 

  • Barnes, J. P., & Putnam, A. R. (1987). Role of benzoxazinones in allelopathy by rye (Secale cereale L.). Journal of Chemical Ecology, 13, 889–906.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik, P. C. (2003). Challenges and opportunities in implementing allelopathy for natural weed management. Crop Protection, 22, 661–671.

    Article  Google Scholar 

  • Brooks, A. M., Danehower, D. A., Murphy, J. P., Reberg-Horton, S. C., & Burton, J. D. (2012). Estimation of heritability of benzoxazinoid production in rye (Secale cereale) using gas chromatographic analysis. Plant Breeding, 131, 104–109.

    Article  CAS  Google Scholar 

  • Burgos, N. R., & Talbert, R. E. (2000). Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Science, 48, 302–310.

    Article  CAS  Google Scholar 

  • Burgos, N. R., Talbert, R. E., & Mattice, J. D. (1999). Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Science, 47, 481–485.

    CAS  Google Scholar 

  • Burgos, N., Talbert, R., Kim, K., & Kuk, Y. (2004). Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). Journal of Chemical Ecology, 30, 671–689.

    Article  CAS  PubMed  Google Scholar 

  • Chase, W. R., Nair, M. G., & Putnam, A. R. (1991). 2, 2′-oxo-1, 1′-azobenzene: selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species: II. Journal of Chemical Ecology, 17, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Cheema, Z., & Khaliq, A. (2000). Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agriculture, Ecosystems & Environment, 79, 105–112.

    Article  Google Scholar 

  • Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., et al. (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104, 1527–1541.

    Article  Google Scholar 

  • Chung, I., Kim, K., Ahn, J., Chun, S., Kim, C., Kim, J., et al. (2002). Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop Protection, 21, 913–920.

    Article  CAS  Google Scholar 

  • Corcuera, L., Argandona, V., & Zúniga, G. (1992). Allelochemicals in wheat and barley: Role in plant–insect interactions. In Allelopathy (pp. 119–127). Berlin: Springer.

    Google Scholar 

  • Dayan, F. E. (2006). Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta, 224, 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Einhellig, F. A. (1995). Mechanism of action of allelochemicals in allelopathy. In: Allelopathy: Vol. 582. ACS Symposium Series (pp. 96–116). Washington, DC: American Chemical Society.

    Google Scholar 

  • Einhellig, F. A. (1996). Interactions involving allelopathy in cropping systems. Agronomy Journal, 88, 886–893.

    Article  CAS  Google Scholar 

  • Einhellig, F. A., Rasmussen, J. A., Hejl, A. M., & Souza, I. F. (1993). Effects of root exudate sorgoleone on photosynthesis. Journal of Chemical Ecology, 19, 369–375.

    Article  CAS  PubMed  Google Scholar 

  • El Marsni, Z., Torres, A., Varela, R. M., Molinillo, J. M., Casas, L., Mantell, C., et al. (2015). Isolation of bioactive compounds from sunflower leaves (Helianthus annuus L.) extracted with supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 63, 6410–6421.

    Article  CAS  PubMed  Google Scholar 

  • Fang, C.-X., He, H.-B., Wang, Q.-S., Qiu, L., Wang, H.-B., Zhuang, Y.-E., et al. (2010). Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regulation, 61, 277–286.

    Article  CAS  Google Scholar 

  • Farhoudi, R., & Lee, D.-J. (2015). Allelopathic potential of sunflower (Helianthus annus) water extracts to reduce the pendimethalin herbicide dose to control Chenopodium album in corn (Zea mays). Allelopathy Journal, 35.

    Google Scholar 

  • Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., & Siddique, K. H. (2011). The role of allelopathy in agricultural pest management. Pest Management Science, 67, 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Fomsgaard, I. S. (2006). Chemical ecology in wheat plant-pest interactions. How the use of modern techniques and a multidisciplinary approach can throw new light on a well-known phenomenon: allelopathy. Journal of Agricultural and Food Chemistry, 54, 987–990.

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska, A., & Bogatek, R. (2005). Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, 27, 395–407.

    Article  CAS  Google Scholar 

  • Hura, T., Dubert, F., Dąbkowska, T., Stupnicka-Rodzynkiewicz, E., Stokłosa, A., & Lepiarczyk, A. (2006). Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli. Acta Physiologiae Plantarum, 28, 537–545.

    Article  CAS  Google Scholar 

  • IAS, International, Allelopathy, and Society (1996). Constitution. Drawn up during the First World Congress on Allelopathy: A science for the future, Cadiz, Spain.

    Google Scholar 

  • Iqbal, J., Cheema, Z., & An, M. (2007). Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant and Soil, 300, 163–171.

    Article  CAS  Google Scholar 

  • Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Allelopathy (pp. 349–385). Berlin: Springer.

    Chapter  Google Scholar 

  • Jabran, K., Cheema, Z., Farooq, M., & Hussain, M. (2010a). Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). International Journal of Agriculture and Biology, 12, 335–340.

    CAS  Google Scholar 

  • Jabran, K., Farooq, M., Hussain, M., & Ali, M. (2010b). Wild oat (Avena fatua L.) and canary grass (Phalaris minor Ritz.) management through allelopathy. Journal of Plant Protection Research, 50, 41–44.

    Article  Google Scholar 

  • Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65.

    Article  Google Scholar 

  • Jabran, K., Cheema, Z. A., Khan, M. B., & Hussain, M. (2016). Control of cabbage aphid Brevicoryne brassicae (Homoptera: Aphididae) through allelopathic water extracts. Pakistan Journal of Scientific Industrial Research. Series B: Biological Science, 59, 48–51.

    Google Scholar 

  • Kato-Noguchi, H., Ota, K., & Kujime, H. (2012). Absorption of momilactone A and B by Arabidopsis thaliana L. and the growth inhibitory effects. Journal of Plant Physiology, 169, 1471–1476.

    Article  CAS  PubMed  Google Scholar 

  • Khaliq, A., Matloob, A., Tanweer, A., & Khan, M. B. (2012). Naturally occurring phytotoxins in allelopathic plants help reduce herbicide dose in wheat. Natural Product Research, 26, 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M., Ahmad, M., Hussain, M., Jabran, K., Farooq, S., & Waqas-Ul-Haq, M. (2012). Allelopathic plant water extracts tank mixed with reduced doses of atrazine efficiently control Trianthema portulacastrum L. Zea mays. Journal of Animal and Plant Sciences, 22, 339–346.

    CAS  Google Scholar 

  • Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., & Jiang, D.-A. (2010). Phenolics and plant allelopathy. Molecules, 15, 8933–8952.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, Q., Hu, W., Yang, X., & He, H. (2015). Stability of phenolic acids and the effect on weed control activity. Journal of the Korean Society for Applied Biological Chemistry, 58, 919–926.

    Article  CAS  Google Scholar 

  • Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications, 3, 92–122.

    Article  PubMed  Google Scholar 

  • Liu, D. L., & Lovett, J. (1993a). Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. Journal of Chemical Ecology, 19, 2217–2230.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D. L., & Lovett, J. (1993b). Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. Journal of Chemical Ecology, 19, 2231–2244.

    Article  CAS  PubMed  Google Scholar 

  • Macías, F. A., Oliveros-Bastidas, A., Marín, D., Chinchilla, N., Castellano, D., & Molinillo, J. M. (2014). Evidence for an allelopathic interaction between rye and wild oats. Journal of Agricultural and Food Chemistry, 62, 9450–9457.

    Article  PubMed  Google Scholar 

  • Macı́as, F. A., Torres, A., Galindo, J. L., Varela, R. M., Álvarez, J. A., & Molinillo, J. M. (2002). Bioactive terpenoids from sunflower leaves cv. Peredovick®. Phytochemistry, 61, 687–692.

    Article  PubMed  Google Scholar 

  • Makowska, B., Bakera, B., & Rakoczy-Trojanowska, M. (2015). The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiologiae Plantarum, 37(176), 1–12.

    CAS  Google Scholar 

  • Mamolos, A., & Kalburtji, K. (2001). Significance of allelopathy in crop rotation. Journal of Crop Production, 4, 197–218.

    Article  Google Scholar 

  • Mithen, R. (2001). Glucosinolates–biochemistry, genetics and biological activity. Plant Growth Regulation, 34, 91–103.

    Article  CAS  Google Scholar 

  • Molisch, H. (1937). Der einfluss einer pflanze auf die andere, allelopathie. Jena: Gustav Fischer.

    Google Scholar 

  • Muzell Trezzi, M., Vidal, R. A., Balbinot Junior, A. A., von Hertwig Bittencourt, H., & da Silva Souza Filho, A. P. (2016). Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11, 53–60.

    Article  Google Scholar 

  • Niemeyer, H. M. (1988). Hydroxamic acids (4-hydroxy-1, 4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry, 27, 3349–3358.

    Article  CAS  Google Scholar 

  • Niemeyer, H. M., Pesel, E., Copaja, S. V., Bravo, H. R., Franke, S., & Francke, W. (1989). Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry, 28, 447–449.

    Article  CAS  Google Scholar 

  • Ondiaka, S., Migiro, L., Rur, M., Birgersson, G., Porcel, M., Rämert, B., et al. (2015). Sunflower as a trap crop for the European tarnished plant bug (Lygus rugulipennis). Journal of Applied Entomology, 140, 453–461.

    Article  Google Scholar 

  • Qi, Y.-Z., Zhen, W.-C., & Li, H.-Y. (2015). Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. Journal of Integrative Agriculture, 14, 88–97.

    Article  CAS  Google Scholar 

  • Rasmussen, J. A., Hejl, A. M., Einhellig, F. A., & Thomas, J. A. (1992). Sorgoleone from root exudate inhibits mitochondrial functions. Journal of Chemical Ecology, 18, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Razzaq, A., Cheema, Z., Jabran, K., Farooq, M., Khaliq, A., Haider, G., et al. (2010). Weed management in wheat through combination of allelopathic water extract with reduced doses of herbicides. Pakistan Journal of Weed Science Research, 16, 247–256.

    Google Scholar 

  • Razzaq, A., Cheema, Z., Jabran, K., Hussain, M., Farooq, M., & Zafar, M. (2012). Reduced herbicide doses used together with allelopathic sorghum and sunflower water extracts for weed control in wheat. Journal of Plant Protection Research, 52, 281–285.

    Article  CAS  Google Scholar 

  • Rice, E. L. (1979). Allelopathy—An update. The Botanical Review, 45, 15–109.

    Article  CAS  Google Scholar 

  • Rice, E. (1984). Allelopathy. Orlando: Academic.

    Google Scholar 

  • Rice, C. P., Cai, G., & Teasdale, J. R. (2012). Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. Journal of Agricultural and Food Chemistry, 60, 4471–4479.

    Article  CAS  PubMed  Google Scholar 

  • Rizvi, S., Haque, H., Singh, V., & Rizvi, V. (1992). A discipline called allelopathy. In Allelopathy (pp. 1–10). Berlin: Springer.

    Chapter  Google Scholar 

  • Roy, A., Biswas, B., Sen, P. K., & Venkateswaran, R. V. (2007). Total synthesis of heliannuol B, an allelochemical from Helianthus annuus. Tetrahedron Letters, 48, 6933–6936.

    Article  CAS  Google Scholar 

  • Schmelz, E. A., Huffaker, A., Sims, J. W., Christensen, S. A., Lu, X., Okada, K., et al. (2014). Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. The Plant Journal, 79, 659–678.

    Article  CAS  PubMed  Google Scholar 

  • Scognamiglio, M., D’Abrosca, B., Esposito, A., Pacifico, S., Monaco, P., & Fiorentino, A. (2013). Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews, 12, 803–830.

    Article  CAS  Google Scholar 

  • Shahzad, M., Farooq, M., Jabran, K., & Hussain, M. (2016). Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Protection, 89, 161–169.

    Article  Google Scholar 

  • Song, B., Xiong, J., Fang, C., Qiu, L., Lin, R., Liang, Y., & Lin, W. (2008). Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. Journal of Chemical Ecology, 34, 688–695.

    Article  CAS  PubMed  Google Scholar 

  • Sturm, D. J., Kunz, C., & Gerhards, R. (2016). Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L. Crop Protection, 90, 125–131.

    Article  Google Scholar 

  • Uddin, M. R., Park, K. W., Kim, Y. K., Park, S. U., & Pyon, J. Y. (2010). Enhancing sorgoleone levels in grain sorghum root exudates. Journal of Chemical Ecology, 36, 914–922.

    Article  CAS  PubMed  Google Scholar 

  • Uddin, M. R., Park, S. U., Dayan, F. E., & Pyon, J. Y. (2014). Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 70, 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Venturelli, S., Belz, R. G., Kämper, A., Berger, A., von Horn, K., Wegner, A., Böcker, A., Zabulon, G., Langenecker, T., & Kohlbacher, O. (2015). Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. The Plant Cell, 27, 3175–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58, 1631–1646.

    Article  CAS  Google Scholar 

  • Weidenhamer, J. D., Mohney, B. K., Shihada, N., & Rupasinghe, M. (2014). Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions? Journal of Chemical Ecology, 40, 940–952.

    Article  CAS  PubMed  Google Scholar 

  • Willard, J. I., & Penner, D. (1976). Benzoxazinones: Cyclic hydroxamic acids found in plants. In Residue reviews (pp. 67–76). Berlin: Springer.

    Chapter  Google Scholar 

  • Willis, R. (1985). The historical bases of the concept of allelopathy. Journal of the History of Biology, 18, 71–102.

    Article  Google Scholar 

  • Worthington, M., & Reberg-Horton, C. (2013). Breeding cereal crops for enhanced weed suppression: Optimizing allelopathy and competitive ability. Journal of Chemical Ecology, 39, 213–231.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (1999). Simultaneous determination of phenolic acids and 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 864, 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (2000a). Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in root tissues. Journal of Agricultural and Food Chemistry, 48, 5321–5325.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (2000b). Distribution and exudation of allelochemicals in wheat Triticum aestivum. Journal of Chemical Ecology, 26, 2141–2154.

    Article  CAS  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., & An, M. (2001). Allelochemicals in wheat (Triticum aestivum L.): Production and exudation of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one. Journal of Chemical Ecology, 27, 1691–1700.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Liu, X., Dong, F., Li, J., Gong, Y., & Zhu, G. (2010). Biological induction of DIMBOA in wheat seedlings by weeds. Allelopathy Journal, 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Jabran, K. (2017). Allelopathy: Introduction and Concepts. In: Manipulation of Allelopathic Crops for Weed Control. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-53186-1_1

Download citation

Publish with us

Policies and ethics