Scintillation Process and Light Detectors

Part of the Graduate Texts in Physics book series (GTP)


Scintillation detectors convert energy from the incident radiation into visible or near visible light. The light is guided out of the sensitive volume and appropriately detected with photosensors. This chapter describes first the physics mechanism of luminescence and the materials most commonly used before dealing with the transport of light, the wavelength shifting and photoelectric light detection. A section on bolometers, which are sensitive thermal light detectors, ends the chapter.


Light Guide Plastic Scintillator Secondary Emission Good Energy Resolution Inorganic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Saint-Gobain Ceramics & Plastics, Inc, Data from IEEE NSS NS-30, 380 (1983), Accessed 7 Dec 2016
  2. 2.
    M. Moszyński et al., Nucl. Instrum. Methods Phys. Res. Sect. A 568(2) 739–751 (2006). doi: 10.1016/j.nima.2006.06.039
  3. 3.
    A.A. Annenkov, M.V. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. Sect. A 490(12), 30–50 (2002).
  4. 4.
    C.M.S. Collaboration, The CMS experiment at the CERN LHC 2008. JINST 3, S08004 (2008)ADSGoogle Scholar
  5. 5.
    CMS Collaboration, CMS Physics Technical Design Report, Volume 1: Detector Performance and Software 2006, CERN/LHCC-2006-001; CMS-TDR-008-1 (2006)Google Scholar
  6. 6.
    H. Avakian et al., Performance of F101 radiation resistant lead glass shower counters. Nucl. Instrum. Methods Phys. Res. Sect. A 378(12), 155–161 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Gooding, H.G. Pugh, Nucl. Instrum. Methods 7 189–192 (1960)Google Scholar
  8. 8.
    N. Zaitseva, Pulse shape discrimination with lithium-containing organic scintillators. Nucl. Instrum. Methods Phys. Res. A 729, 747–754 (2013)Google Scholar
  9. 9.
    Eljen Technology, 1300 W. Broadway, Sweetwater, TX 79556, Accessed 7 Dec 2016
  10. 10.
    D. Renker, Nucl. Instrum. Methods Phys. Res. Sect. A 527(12), 15–20 (2004)ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
    L. Lei et al., The variation of spectral response of transmission-type GaAs photocathode in the seal process. Appl. Surface Sci. 251, 273–277 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Hamamatsu Photonics K.K., Photomultiplier Tubes, Basics and Applications, 3rd edn. (2007),
  14. 14.
    Smith et al., Performance of a photomultiplier with a porous transmission dynode. IEEE Trans. Nucl. Sci. 13(3) (1966)Google Scholar
  15. 15.
    P. Benetti et al., Nucl. Instrum. Methods Phys. Res. Sect. A 505(12), 89–92 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    G. Rieke, Detection of Light, From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge, 2003)Google Scholar
  17. 17.
    G. Siringo et al., Astron. Astrophys. 497(3), 945–962 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Image Number CERN-EX-0803027-02, CERN Document Server, Accessed 21 Dec 2016

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyQueen Mary University of LondonLondonUK

Personalised recommendations