Advertisement

Gaseous and Liquid Ionisation Detectors

Chapter
  • 2.4k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Ionisation is one of the most common processes used today for radiation detection and measurement. Ionisation of gases and liquids forms the basis for a large number of devices that have been developed over a span of several decades. This Chapter presents the physics principles of ionisation, the properties of transport of electrons and ions in gases, and how these properties are exploited in common devices from the simplest, the Geiger counter, to the Time Projection Chamber.

Keywords

Ionisation Chamber Drift Time Time Projection Chamber Drift Chamber Liquid Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.C. Melissinos, Experiments in Modern Physics (Academic Press, New York, 1955)Google Scholar
  2. 2.
    An ionisation smoke alarmo from Ei Electronics. Credit Hiya111 at English Wikipedia, https://en.wikipedia.org/wiki/Smoke_detector#/media/File:Smokealarm.JPG. Accessed 20 Dec 2016, Public Domain
  3. 3.
    M.E. Rudd, R.D. DuBois, L.H. Toburen, C.A. Ratcliffe, T.V. Goffe, Phys. Rev. A 28, 3244 (1983)Google Scholar
  4. 4.
    T. Zhao, Y. Chen, S. Han, J. Hersch, Nuclear Instruments Methods Phys. Res. Sect. A 340(3), 485–490 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010)Google Scholar
  6. 6.
    J. Adam et al., Nuclear Instruments Methods Phys. Res. 217(1–2), 291–297 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    G. Charpak, D. Rahm, H. Steiner, Nuclear Instruments Methods, 80(1), 1334, 1 April 1970Google Scholar
  8. 8.
    R. Santonico, R. Cardarelli, Development of resistive plate counters. Nuclear Instruments Methods A 187(2–3), 377–380 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Giomataris, Ph Rebourgeard, J.P. Robert, G. Charpak, Nuclear Instruments Methods Phys. Res. Sect. A 376(1), 29–35 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    F. Sauli, Nuclear Instruments Methods Phys. Res. Sect. A 386(23), 531–534 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    G. Cattani, A.T.L.A.S. Muon Collaboration, Nuclear Instruments Methods Phys. Res. Sect. A 661(Supplement 1), S6–S9 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Bertolucci et al., CDF Collaboration Public Note CDF/DOC/MUON/PUBLIC 6362 (2002)Google Scholar
  13. 13.
    T. Affolder et al., CDF Central Outer Tracker. Nuclear Instruments Methods Sect. A 526(3), 249 (2004). doi: 10.1016/S0168-9002(01) ADSCrossRefGoogle Scholar
  14. 14.
    J. Alme et al., ALICE TPC collaboration. Nuclear Instruments Methods Sect. A 622(1), 316–367 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, and T. Doke, Noble Gas Detectors (Wiley-VCH Verlag, Weinheim, 2006)Google Scholar
  16. 16.
    E. Aprile, T. Doke, Rev. Mod. Phys. 82, 2053 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    ATLAS Collaboration, ATLAS liquid-argon calorimeter: Technical Design Report, ATLAS-TDR-2 ; CERN-LHCC-96-041 (1996) — Fig 1.2Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyQueen Mary University of LondonLondonUK

Personalised recommendations