Skip to main content

Nutritional Support in the Neurointensive Care Unit

  • Chapter
  • First Online:
Nutrition in Neurologic Disorders

Abstract

Acute neurological injuries result in activation of sympathetic and inflammatory pathways that have significant impact on the resting metabolic rate. The resultant hypermetabolic state, if not fully supported, can result in a malnourished state, influence secondary complications, and impair the recovery process. Therefore, it is important to recognize the nutritional status of patients in the neurocritical care setting. Unfortunately, much of the data supporting nutritional support is derived from studies in a general critical care population and does not address specific needs for the neurologically injured patient population. This chapter will provide an updated review of the literature on methods by which to monitor and manage nutritional status for common diseases in the neurocritical care setting. Additionally, new concepts of providing nutritional interventions as targeted therapies modulating the immune response after neurological injury will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    Article  CAS  PubMed  Google Scholar 

  2. Gentile NT, McIntosh TK (1993) Antagonists of excitatory amino acids and endogenous opioid peptides in the treatment of experimental central nervous system injury. Ann Emerg Med 22:1028–1034

    Article  CAS  PubMed  Google Scholar 

  3. Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14:23–34

    Article  CAS  PubMed  Google Scholar 

  4. Clifton GL, Robertson CS, Grossman RG, Hodge S, Foltz R, Garza C (1984) The metabolic response to severe head injury. J Neurosurg 60:687–696

    Article  CAS  PubMed  Google Scholar 

  5. Weitzel LR, Wischmeyer PE (2010) Glutamine in critical illness: the time has come, the time is now. Crit Care Clin 26:515–525

    Article  CAS  PubMed  Google Scholar 

  6. Curi R, Newsholme P, Procopio J, Lagranha C, Gorjao R, Pithon-Curi TC (2007) Glutamine, gene expression, and cell function. Front Biosci 12:344–357

    Article  CAS  PubMed  Google Scholar 

  7. Mates JM, Segura JA, Campos-Sandoval JA et al (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061

    Article  CAS  PubMed  Google Scholar 

  8. Godoy DA, Pinero GR, Svampa S, Papa F, Di Napoli M (2009) Early hyperglycemia and intravenous insulin-the rationale and management of hyperglycemia for spontaneous intracerebral hemorrhage patients: is time for change? Neurocrit Care 10:150–153

    Article  PubMed  Google Scholar 

  9. Kramer AH, Roberts DJ, Zygun DA (2012) Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care 16:R203

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pontes-Arruda A, Demichele S, Seth A, Singer P (2008) The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. J Parenter Enteral Nutr (JPEN) 32:596–605

    Article  CAS  Google Scholar 

  11. Singer P, Shapiro H, Theilla M, Anbar R, Singer J, Cohen J (2008) Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med 34:1580–1592

    Article  CAS  PubMed  Google Scholar 

  12. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990) A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 51:241–247

    CAS  PubMed  Google Scholar 

  13. Harris JA, Benedict FG (1918) A biometric study of human basal metabolism. Proc Natl Acad Sci U S A 4:370–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McClave SA, Martindale RG, Vanek VW et al (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) J Parenter Enteral Nutr (JPEN) 33:277–316

    Article  Google Scholar 

  15. Singer P, Singer J (2016) Clinical guide for the use of metabolic carts: indirect calorimetry-no longer the orphan of energy estimation. Nutr Clin Pract 31:30–38

    Article  CAS  PubMed  Google Scholar 

  16. Schlein KM, Coulter SP (2014) Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract 29:44–55

    Article  PubMed  Google Scholar 

  17. Heidegger CP, Berger MM, Graf S et al (2013) Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 381:385–393

    Article  PubMed  Google Scholar 

  18. Singer P, Anbar R, Cohen J et al (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37:601–609

    Article  PubMed  Google Scholar 

  19. Casaer MP, Mesotten D, Hermans G et al (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365:506–517

    Article  CAS  PubMed  Google Scholar 

  20. Arabi YM, Tamim HM, Dhar GS et al (2011) Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr 93:569–577

    Article  CAS  PubMed  Google Scholar 

  21. Rice TW, Mogan S, Hays MA, Bernard GR, Jensen GL, Wheeler AP (2011) Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med 39:967–974

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heyland DK, Stephens KE, Day AG, McClave SA (2011) The success of enteral nutrition and ICU-acquired infections: a multicenter observational study. Clin Nutr 30:148–155

    Article  PubMed  Google Scholar 

  23. Kondrup J, Rasmussen HH, Hamberg O, Stanga Z, Ad Hoc EWG (2003) Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 22:321–336

    Article  PubMed  Google Scholar 

  24. McClave SA, Taylor BE, Martindale RG et al (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) J Parenter Enteral Nutr (JPEN) 40:159–211

    Article  CAS  Google Scholar 

  25. Badjatia N, Monahan A, Carpenter A et al (2015) Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology 84:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Birkhahn RH, Long CL, Fitkin D, Jeevanandam M, Blakemore WS (1981) Whole-body protein metabolism due to trauma in man as estimated by L-[15N]alanine. Am J Physiol 241:E64–E71

    CAS  PubMed  Google Scholar 

  27. Dickerson RN, Pitts SL, Maish GO 3rd et al (2012) A reappraisal of nitrogen requirements for patients with critical illness and trauma. J Trauma Acute Care Surg 73:549–557

    Article  CAS  PubMed  Google Scholar 

  28. Barber L, Barrett R, Lichtwark G (2011) Validity and reliability of a simple ultrasound approach to measure medial gastrocnemius muscle length. J Anat 218:637–642

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mourtzakis M, Wischmeyer P (2014) Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care 17:389–395

    Article  PubMed  Google Scholar 

  30. Puthucheary ZA, Rawal J, McPhail M et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600

    Article  CAS  PubMed  Google Scholar 

  31. Doig GS, Heighes PT, Simpson F, Sweetman EA, Davies AR (2009) Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med 35:2018–2027

    Article  CAS  PubMed  Google Scholar 

  32. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P (2003) Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr (JPEN) 27:355–373

    Article  Google Scholar 

  33. Marik PE, Zaloga GP (2001) Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 29:2264–2270

    Article  CAS  PubMed  Google Scholar 

  34. Wells DL (2012) Provision of enteral nutrition during vasopressor therapy for hemodynamic instability: an evidence-based review. Nutr Clin Pract 27:521–526

    Article  PubMed  Google Scholar 

  35. Braunschweig CL, Levy P, Sheean PM, Wang X (2001) Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr 74:534–542

    CAS  PubMed  Google Scholar 

  36. Stanga Z, Brunner A, Leuenberger M et al (2008) Nutrition in clinical practice-the refeeding syndrome: illustrative cases and guidelines for prevention and treatment. Eur J Clin Nutr 62:687–694

    Article  CAS  PubMed  Google Scholar 

  37. Ziegler TR (2009) Parenteral nutrition in the critically ill patient. N Engl J Med 361:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Halmos EP (2013) Role of FODMAP content in enteral nutrition-associated diarrhea. J Gastroenterol Hepatol 28(Suppl 4):25–28

    Article  CAS  PubMed  Google Scholar 

  39. Magnuson B, Hatton J, Zweng TN, Young B (1994) Pentobarbital coma in neurosurgical patients: nutrition considerations. Nutr Clin Pract 9:146–150

    Article  CAS  PubMed  Google Scholar 

  40. Saklad JJ, Graves RH, Sharp WP (1986) Interaction of oral phenytoin with enteral feedings. J Parenter Enteral Nutr (JPEN) 10:322–323

    Article  CAS  Google Scholar 

  41. Dennis MS, Lewis SC, Warlow C, Collaboration FT (2005) Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial. Lancet 365:764–772

    Article  CAS  PubMed  Google Scholar 

  42. Van der Riet P, Brooks D, Ashby M (2006) Nutrition and hydration at the end of life: pilot study of a palliative care experience. J Law Med 14:182–198

    PubMed  Google Scholar 

  43. Becker DP, Miller JD, Ward JD, Greenberg RP, Young HF, Sakalas R (1977) The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg 47:491–502

    Article  CAS  PubMed  Google Scholar 

  44. Foley N, Marshall S, Pikul J, Salter K, Teasell R (2008) Hypermetabolism following moderate to severe traumatic acute brain injury: a systematic review. J Neurotrauma 25:1415–1431

    Article  PubMed  Google Scholar 

  45. Clifton GL, Robertson CS (2013) The metabolic response to severe head injury. In: Miner ME, Wagner KA (eds) Neurotrauma: treatment, rehabilitation, and related issues. Elsevier Science, Boston, pp 73–88

    Google Scholar 

  46. Mackay LE, Morgan AS, Bernstein BA (1999) Swallowing disorders in severe brain injury: risk factors affecting return to oral intake. Arch Phys Med Rehabil 80:365–371

    Article  CAS  PubMed  Google Scholar 

  47. Hartl R, Gerber LM, Ni Q, Ghajar J (2008) Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg 109:50–56

    Article  PubMed  Google Scholar 

  48. Davalos A, Ricart W, Gonzalez-Huix F et al (1996) Effect of malnutrition after acute stroke on clinical outcome. Stroke 27:1028–1032

    Article  CAS  PubMed  Google Scholar 

  49. Wan Sulaiman WA, Hashim HZ, Che Abdullah ST, Hoo FK, Basri H (2014) Managing post stroke hyperglycaemia: moderate glycaemic control is better? An update. EXCLI J 13:825–833

    PubMed  PubMed Central  Google Scholar 

  50. Stead LG, Gilmore RM, Bellolio MF et al (2009) Hyperglycemia as an independent predictor of worse outcome in non-diabetic patients presenting with acute ischemic stroke. Neurocrit Care 10:181–186

    Article  PubMed  Google Scholar 

  51. Pakhetra R, Garg MK, Suryanarayana KM (2011) Management of hyperglycemia in critical illness: review of targets and strategies. Med J Armed Forces India 67:53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cleland SJ, Petrie JR, Small M, Elliott HL, Connell JM (2000) Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension 35:507–511

    Article  CAS  PubMed  Google Scholar 

  53. Hamilton MG, Tranmer BI, Auer RN (1995) Insulin reduction of cerebral infarction due to transient focal ischemia. J Neurosurg 82:262–268

    Article  CAS  PubMed  Google Scholar 

  54. Marik PE, Raghavan M (2004) Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 30:748–756

    Article  PubMed  Google Scholar 

  55. Bruno A, Durkalski VL, Hall CE et al (2014) The stroke hyperglycemia insulin network effort (SHINE) trial protocol: a randomized, blinded, efficacy trial of standard vs. intensive hyperglycemia management in acute stroke. Int J Stroke 9:246–251

    Article  PubMed  Google Scholar 

  56. Dennis M, Lewis S, Cranswick G, Forbes J, Collaboration FT (2006) FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. Health Technol Assess 10:1–120

    Article  Google Scholar 

  57. Esper DH, Coplin WM, Carhuapoma JR (2006) Energy expenditure in patients with nontraumatic intracranial hemorrhage. J Parenter Enteral Nutr (JPEN) 30:71–75

    Article  Google Scholar 

  58. Kasuya H, Kawashima A, Namiki K, Shimizu T, Takakura K (1998) Metabolic profiles of patients with subarachnoid hemorrhage treated by early surgery. Neurosurgery 42:1268–1274. discussion 1274–1265

    Article  CAS  PubMed  Google Scholar 

  59. Hanafy KA, Grobelny B, Fernandez L et al (2010) Brain interstitial fluid TNF-alpha after subarachnoid hemorrhage. J Neurol Sci 291:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobak S, Rincon F (2016) “Cool” topic: feeding during moderate hypothermia after intracranial hemorrhage. J Parenter Enteral Nutr (JPEN)

    Google Scholar 

  61. Badjatia N, Fernandez L, Schlossberg MJ et al (2010) Relationship between energy balance and complications after subarachnoid hemorrhage. J Parenter Enteral Nutr (JPEN) 34:64–69

    Article  Google Scholar 

  62. Oddo M, Schmidt JM, Carrera E et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238

    Article  CAS  PubMed  Google Scholar 

  63. Badjatia N, Seres D, Carpenter A et al (2012) Free fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 43:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoneda H, Shirao S, Nakagawara J, Ogasawara K, Tominaga T, Suzuki M (2014) A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: the EVAS study. World Neurosurg 81:309–315

    Article  PubMed  Google Scholar 

  65. Kearns PJ, Thompson JD, Werner PC, Pipp TL, Wilmot CB (1992) Nutritional and metabolic response to acute spinal-cord injury. J Parenter Enteral Nutr (JPEN) 16:11–15

    Article  CAS  Google Scholar 

  66. Rodriguez DJ, Benzel EC, Clevenger FW (1997) The metabolic response to spinal cord injury. Spinal Cord 35:599–604

    Article  CAS  PubMed  Google Scholar 

  67. Roubenoff RA, Borel CO, Hanley DF (1992) Hypermetabolism and hypercatabolism in Guillain-Barre syndrome. J Parenter Enteral Nutr (JPEN) 16:464–472

    Article  CAS  Google Scholar 

  68. Weijs PJ, Looijaard WG, Dekker IM et al (2014) Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 18:R12

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286:944–953

    Article  CAS  PubMed  Google Scholar 

  70. Falcao de Arruda IS, de Aguilar-Nascimento JE (2004) Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (London) 106:287–292

    Article  CAS  Google Scholar 

  71. Hasadsri L, Wang BH, Lee JV et al (2013) Omega-3 fatty acids as a putative treatment for traumatic brain injury. J Neurotrauma 30:897–906

    Article  PubMed  Google Scholar 

  72. Austin MW, Ploughman M, Glynn L, Corbett D (2014) Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 87:8–15

    Article  PubMed  Google Scholar 

  73. Egan KJ, Janssen H, Sena ES et al (2014) Exercise reduces infarct volume and facilitates neurobehavioral recovery: results from a systematic review and meta-analysis of exercise in experimental models of focal ischemia. Neurorehabil Neural Repair 28:800–812

    Article  PubMed  Google Scholar 

  74. Group ATC, Bernhardt J, Langhorne P et al (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386:46–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Badjatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, I., Bojedla, S., Badjatia, N. (2017). Nutritional Support in the Neurointensive Care Unit. In: Arsava, E. (eds) Nutrition in Neurologic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-53171-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53171-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53170-0

  • Online ISBN: 978-3-319-53171-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics