Skip to main content

Assembly and Egress of an Alphaherpesvirus Clockwork

  • Chapter
  • First Online:

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaitua F, O’Hare P (2008) Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein. J Virol 82:5234–5244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abaitua F, Hollinshead M, Bolstad M, Crump CM, O’Hare P (2012) A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J Virol 86:8998–9014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal A, Miranda-Saksena M, Boadle RA, Kelly BJ, Diefenbach RJ, Alam W, Cunningham AL (2012) Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons. J Virol 86:6123–6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antinone SE, Smith GA (2010) Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol 84:1504–1512

    Article  CAS  PubMed  Google Scholar 

  • Bacallao R, Antony C, Dotti C, Karsenti E, Stelzer EH, Simons K (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol 109:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Baker ML, Jiang W, Wedemeyer WJ, Rixon FJ, Baker D, Chiu W (2006) Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS Comput Biol 2:e146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohannon KP, Jun Y, Gross SP, Smith GA (2013) Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc Natl Acad Sci U S A 110:E1613–E1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolstad M, Abaitua F, Crump CM, O’Hare P (2011) Autocatalytic activity of the ubiquitin-specific protease domain of herpes simplex virus 1 VP1-2. J Virol 85:8738–8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böttcher S, Maresch C, Granzow H, Klupp BG, Teifke JP, Mettenleiter TC (2008) Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. J Virol 82:6009–6016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brideau AD, Card JP, Enquist LW (2000) Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74:834–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JC, Newcomb WW (2011) Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol 1:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucks MA, O’Regan KJ, Murphy MA, Wills JW, Courtney RJ (2007) Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–117

    Article  CAS  PubMed  Google Scholar 

  • Campadelli-Fiume G, Roizman B (2006) The egress of herpesviruses from cells: the unanswered questions. J Virol 80:6716–6717; author replies 6717–6719

    Google Scholar 

  • Cardone G, Newcomb WW, Cheng N, Wingfield PT, Trus BL, Brown JC, Steven AC (2012) The UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid vertices. J Virol 86:4058–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ch’ng TH, Enquist LW (2005a) Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system. J Virol 79:10875–10889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ch’ng TH, Enquist LW (2005b) Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E. J Virol 79:8835–8846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chadha P, Han J, Starkey JL, Wills JW (2012) Regulated interaction of tegument proteins UL16 and UL11 from herpes simplex virus. J Virol 86:11886–11898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JT, Schmid MF, Rixon FJ, Chiu W (2007) Electron cryotomography reveals the portal in the herpesvirus capsid. J Virol 81:2065–2068

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Zhu Z, Gershon AA, Gershon MD (2004) Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119:915–926

    Article  CAS  PubMed  Google Scholar 

  • Chouljenko DV, Jambunathan N, Chouljenko VN, Naderi M, Brylinski M, Caskey JR, Kousoulas KG (2016) Herpes simplex virus 1 UL37 protein tyrosine residues conserved among all alphaherpesviruses are required for interactions with glycoprotein K, cytoplasmic virion envelopment, and infectious virus production. J Virol 90:10351–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller KE, Lee JI, Ueda A, Smith GA (2007) The capsid and tegument of the alpha herpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81:11790–11797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper RS, Heldwein EE (2015) Herpesvirus gB: a finely tuned fusion machine. Viruses 7:6552–6569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham A, Miranda-Saksena M, Diefenbach R, Johnson D (2013) Letter in response to: Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol 23:414–418

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Gong D, Wu TT, Sun R, Zhou ZH (2014) Organization of capsid-associated tegument components in Kaposi’s sarcoma-associated herpesvirus. J Virol 88:12694–12702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel GR, Sollars PJ, Pickard GE, Smith GA (2015) Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism. J Virol 89:8088–8091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delboy MG, Roller DG, Nicola AV (2008) Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J Virol 82:3381–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai PJ (2000) A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74:11608–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai P, Sexton GL, Huang E, Person S (2008) Localization of herpes simplex virus type 1 UL37 in the Golgi complex requires UL36 but not capsid structures. J Virol 82:11354–11361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kasmi I, Lippe R (2014) HSV-1 gN partners with gM to modulate the viral fusion machinery. J Virol 89:2313–2323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51:237–347

    Article  CAS  PubMed  Google Scholar 

  • Fan WH, Roberts AP, McElwee M, Bhella D, Rixon FJ, Lauder R (2014) The large tegument protein pUL36 is essential for formation of the capsid vertex specific component at the capsid-tegument interface of HSV-1. J Virol 89:1502–1511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs W, Granzow H, Klupp BG, Kopp M, Mettenleiter TC (2002) The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions. J Virol 76:6729–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs W, Klupp BG, Granzow H, Mettenleiter TC (2004) Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 78:11879–11889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller AO, Santos RE, Spear PG (1989) Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63:3435–3443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulmer PA, Melancon JM, Baines JD, Kousoulas KG (2007) UL20 protein functions precede and are required for the UL11 functions of herpes simplex virus type 1 cytoplasmic virion envelopment. J Virol 81:3097–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, Di Guglielmo C, Masucci MG (2010) A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12:351–361

    Article  CAS  PubMed  Google Scholar 

  • Gastaldello S, Chen X, Callegari S, Masucci MG (2013) Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog 9:e1003664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granzow H, Weiland F, Jons A, Klupp BG, Karger A, Mettenleiter TC (1997) Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J Virol 71:2072–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granzow H, Klupp BG, Fuchs W, Veits J, Osterrieder N, Mettenleiter TC (2001) Egress of alphaherpesviruses: comparative ultrastructural study. J Virol 75:3675–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granzow H, Klupp BG, Mettenleiter TC (2005) Entry of pseudorabies virus: an immunogold-labeling study. J Virol 79:3200–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Article  CAS  PubMed  Google Scholar 

  • Grunewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Han J, Chadha P, Meckes DG Jr, Baird NL, Wills JW (2011) Interaction and interdependent packaging of tegument protein UL11 and glycoprotein E of herpes simplex virus. J Virol 85:9437–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci U S A 109:19798–19803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper AL, Meckes DG Jr, Marsh JA, Ward MD, Yeh PC, Baird NL, Wilson CB, Semmes OJ, Wills JW (2010) Interaction domains of the UL16 and UL21 tegument proteins of herpes simplex virus. J Virol 84:2963–2971

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  CAS  PubMed  Google Scholar 

  • Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G (2012) Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J 31:4204–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM, Conway JF (2013) Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 425:3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook LM, Huang J, Jiang M, Hodinka R, Friedman HM (2008) Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E. J Virol 82:6935–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard PW, Howard TL, Johnson DC (2013) Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 87:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Banker G (2012) The translocation selectivity of the kinesins that mediate neuronal organelle transport. Traffic 13(4):549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF (2016) Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 23:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffmaster NJ, Sollars PJ, Richards AL, Pickard GE, Smith GA (2015) Dynamic ubiquitination drives herpesvirus neuroinvasion. Proc Natl Acad Sci U S A 112:12818–12823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, Ou JH, Jung JU (2011) Inhibition of RIG-I-mediated signaling by Kaposi’s sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol 85:10899–10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson C, Schnapp B, Banker GA (2006) A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49:797–804

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, Chouljenko D, Desai P, Charles AS, Subramanian R, Chouljenko VN, Kousoulas KG (2014) The herpes simplex virus type-1 UL37 protein interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment. J Virol 88:5927–5935

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovasevic V, Liang L, Roizman B (2008) Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82:3311–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kattenhorn LM, Korbel GA, Kessler BM, Spooner E, Ploegh HL (2005) A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19:547–557

    Article  CAS  PubMed  Google Scholar 

  • Kelly BJ, Bauerfeind R, Binz A, Sodeik B, Laimbacher AS, Fraefel C, Diefenbach RJ (2014) The interaction of the HSV-1 tegument proteins pUL36 and pUL37 is essential for secondary envelopment during viral egress. Virology 454–455:67–77

    Article  PubMed  CAS  Google Scholar 

  • Kharkwal H, Shanda Furgiuele S, Smith CG, Wilson DW (2015) HSV capsid/organelle association in the absence of the large tegument protein UL36p. J Virol 89(22):11372–11382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkwal H, Smith CG, Wilson DW (2016) Herpes simplex virus capsid localization to ESCRT-VPS4 complexes in the presence and absence of the large tegument protein UL36p. J Virol 90:7257–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YE, Oh SE, Kwon KM, Lee CH, Ahn JH (2016) Involvement of the N-terminal deubiquitinating protease domain of human cytomegalovirus UL48 tegument protein in autoubiquitination, virion stability, and virus entry. J Virol 90:3229–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Nixdorf R, Mettenleiter TC (2000) Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol 74:6760–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Bottcher S, Granzow H, Kopp M, Mettenleiter TC (2005) Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus. J Virol 79:1510–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipe DM, Howley PM (eds) (2013) Fields virology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Ko DH, Cunningham AL, Diefenbach RJ (2010) The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2). J Virol 84:1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Koyano S, Mar EC, Stamey FR, Inoue N (2003) Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J Gen Virol 84:1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM, Enquist LW (2012) Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe 12:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratchmarov R et al (2012) Making the case: married versus separate models of alpha herpes virus anterograde transport in axons. Rev Med Virol 22(6):378–391

    Google Scholar 

  • Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch’ng TH, Cristea IM, Enquist LW (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 87:9431–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker MA, Hofenk J, Rodrigues RJ, Kapitein LC, Akhmanova A, Jaarsma D, Hoogenraad CC (2016) Dynein regulator NDEL1 controls polarized cargo transport at the axon initial segment. Neuron 89:461–471

    Article  CAS  PubMed  Google Scholar 

  • Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM, Kaminski CF (2015) Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat Commun 6:5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVail JH, Tauscher AN, Sucher A, Harrabi O, Brandimarti R (2007) Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience 146:974–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GE, Murray JW, Wolkoff AW, Wilson DW (2006) Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J Virol 80:4264–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Vittone V, Diefenbach E, Cunningham AL, Diefenbach RJ (2008) Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 378:347–354

    Article  CAS  PubMed  Google Scholar 

  • Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M, Smith GA (2009) A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PLoS Pathog 5:e1000387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leelawong M, Lee JI, Smith GA (2012) Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation. J Virol 86:6303–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P (2005) Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 79:13047–13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett 491:168–173

    Article  CAS  PubMed  Google Scholar 

  • Luxton GW, Haverlock S, Coller KE, Antinone SE, Pincetic A, Smith GA (2005) Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102:5832–5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, Smith GA (2006) The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW (2007) PRV Us9 directs axonal sorting of viral capsids. J Virol 81(20):11363–11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 4:e1000065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurer UE, Sodeik B, Grunewald K (2008) Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci U S A 105:10559–10564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117:90–104

    Article  CAS  PubMed  Google Scholar 

  • McGraw HM, Awasthi S, Wojcechowskyj JA, Friedman HM (2009) Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 83:8315–8326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLauchlan J, Rixon FJ (1992) Characterization of enveloped tegument structures (L particles) produced by alphaherpesviruses: integrity of the tegument does not depend on the presence of capsid or envelope. J Gen Virol 73(Pt 2):269–276

    Article  CAS  PubMed  Google Scholar 

  • McLauchlan J, Addison C, Craigie MC, Rixon FJ (1992) Noninfectious L-particles supply functions which can facilitate infection by HSV-1. Virology 190:682–688

    Article  CAS  PubMed  Google Scholar 

  • Meckes DG Jr, Wills JW (2007) Dynamic interactions of the UL16 tegument protein with the capsid of herpes simplex virus. J Virol 81:13028–13036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckes DG Jr, Wills JW (2008) Structural rearrangement within an enveloped virus upon binding to the host cell. J Virol 82:10429–10435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckes DG Jr, Marsh JA, Wills JW (2010) Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus. Virology 398:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W, Mushika Y, Ichii T, Takeichi M (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135:948–959

    Article  CAS  PubMed  Google Scholar 

  • Mettenleiter TC (2008) Pseudorabies virus. In: Encyclopedia of virology, 3rd edn, vol 4. Elsevier, Amsterdam, p 341–351

    Google Scholar 

  • Mettenleiter TC, Minson T (2006) Egress of alphaherpesviruses. J Virol 80:1610–1611. Author reply 1611–1612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michael K, Bottcher S, Klupp BG, Karger A, Mettenleiter TC (2006) Pseudorabies virus particles lacking tegument proteins pUL11 or pUL16 incorporate less full-length pUL36 than wild-type virus, but specifically accumulate a pUL36 N-terminal fragment. J Gen Virol 87:3503–3507

    Article  CAS  PubMed  Google Scholar 

  • Michael K, Klupp BG, Karger A, Mettenleiter TC (2007) Efficient incorporation of tegument proteins pUL46, pUL49, and pUS3 into pseudorabies virus particles depends on the presence of pUL21. J Virol 81:1048–1051

    Article  CAS  PubMed  Google Scholar 

  • Mijatov B, Cunningham AL, Diefenbach RJ (2007) Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology 368:26–31

    Article  CAS  PubMed  Google Scholar 

  • Mohl BS et al (2010) Random transposon-mediated mutagenesis of the essential large tegument protein pUL36 of Pseudorabies virus. J Virol 84(16):8153–8162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan C, Rose HM, Mednis B (1968) Electron microscopy of herpes simplex virus. I. Entry. J Virol 2:507–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison EE, Wang YF, Meredith DM (1998) Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol 72:7108–7114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata T, Hirokawa N (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalwanga D, Rempel S, Roizman B, Baines JD (1996) The UL16 gene product of herpes simplex virus 1 is a virion protein that colocalizes with intranuclear capsid proteins. Virology 226:236–242

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Brown JC (2009) Time-dependent transformation of the herpesvirus tegument. J Virol 83:8082–8089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Brown JC (2010) Structure and capsid association of the herpesvirus large tegument protein UL36. J Virol 84:9408–9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75:10923–10932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV, McEvoy AM, Straus SE (2003) Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324–5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola AV, Hou J, Major EO, Straus SE (2005) Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79:7609–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–780

    Article  CAS  PubMed  Google Scholar 

  • Oshima S, Daikoku T, Shibata S, Yamada H, Goshima F, Nishiyama Y (1998) Characterization of the UL16 gene product of herpes simplex virus type 2. Arch Virol 143:863–880

    Article  CAS  PubMed  Google Scholar 

  • Ovcharenko I et al (2004) eShadow: a tool for comparing closely related sequences. Genome Res 14(6):1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen DJ, Crump CM, Graham SC (2015) Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7:5084–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasdeloup D, Blondel D, Isidro AL, Rixon FJ (2009) Herpesvirus capsid association to the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. J Virol 83:6610–6623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B (2010) Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 6:e1000991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts AP, Abaitua F, O’Hare P, McNab D, Rixon FJ, Pasdeloup D (2009) Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83:105–116

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Murata T, Kanda T, Isomura H, Narita Y, Sugimoto A, Kawashima D, Tsurumi T (2013) Epstein-Barr virus deubiquitinase down-regulates TRAF6-mediated NF-kappaB signaling during productive replication. J Virol 87:4060–4070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipke J, Pohlmann A, Diestel R, Binz A, Rudolph K, Nagel CH, Bauerfeind R, Sodeik B (2012) The C-terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. J Virol 86:3682–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL (2005) A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol 79:15582–15585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlieker C, Weihofen WA, Frijns E, Kattenhorn LM, Gaudet R, Ploegh HL (2007) Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol Cell 25:677–687

    Article  CAS  PubMed  Google Scholar 

  • Scholtes LD, Yang K, Li LX, Baines JD (2010) The capsid protein encoded by U(L)17 of herpes simplex virus 1 interacts with tegument protein VP13/14. J Virol 84(15):7642–7650. doi:10.1128/JVI.00277-10. Epub 2010 May 26

  • Schrag JD, Prasad BV, Rixon FJ, Chiu W (1989) Three-dimensional structure of the HSV1 nucleocapsid. Cell 56:651–660

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith G (2012) Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol 66:153–176

    Article  CAS  PubMed  Google Scholar 

  • Smith GA, Enquist LW (1999) Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol 73:6405–6414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Polcicova K, Johnson DC (2008) Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82:10613–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Soppina V, Norris SR, Dizaji AS, Kortus M, Veatch S, Peckham M, Verhey KJ (2014) Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc Natl Acad Sci U S A 111:5562–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77:10179–10185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey JL, Han J, Chadha P, Marsh JA, Wills JW (2014) Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 88:110–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svobodova S, Bell S, Crump CM (2011) Analysis of the interaction between the essential HSV-1 tegument proteins VP16 and VP1/2. J Virol 86:473–483

    Article  PubMed  CAS  Google Scholar 

  • Svobodova S, Bell S, Crump CM (2012) Analysis of the interaction between the essential herpes simplex virus 1 tegument proteins VP16 and VP1/2. J Virol 86:473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szilagyi JF, Cunningham C (1991) Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol 72:661–668

    Article  CAS  PubMed  Google Scholar 

  • Trus BL, Cheng N, Newcomb WW, Homa FL, Brown JC, Steven AC (2004) Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J Virol 78:12668–12671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, Brown JC, Steven AC (2007) Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcotte S, Letellier J, Lippe R (2005) Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J Virol 79:8847–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, Haas J (2006) Herpesviral protein networks and their interaction with the human proteome. Science 311:239–242

    Article  CAS  PubMed  Google Scholar 

  • van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, Griffin BD, Ressing ME (2014) Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 10:e1003960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vittone V, Diefenbach E, Triffett D, Douglas MW, Cunningham AL, Diefenbach RJ (2005) Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 79:9566–9571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang K, Li J, Zheng C (2013) HSV-1 ubiquitin-specific protease UL36 inhibits IFN-beta production by deubiquitinating TRAF3. J Virol 87:11851–11860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst CB, Ning S, Bentz GL, Dufour F, Gershburg E, Shackelford J, Langelier Y, Pagano JS (2009) The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83:4345–4353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst CB, Vaziri C, Shackelford J, Pagano JS (2012) Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase eta recruitment to DNA damage sites. J Virol 86:8097–8106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfstein A, Nagel CH, Radtke K, Dohner K, Allan VJ, Sodeik B (2006) The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7:227–237

    Article  CAS  PubMed  Google Scholar 

  • Yeh PC, Meckes DG Jr, Wills JW (2008) Analysis of the interaction between the UL11 and UL16 tegument proteins of herpes simplex virus. J Virol 82:10693–10700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE, Smith GA (2013) The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 13:193–203

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W (1999) Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73:3210–3218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZH, Dougherty M, Jakana J, He J, Rixon FJ, Chiu W (2000) Seeing the herpesvirus capsid at 8.5 A. Science 288:877–880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am in debt to Dr. Fred Homa for devoting a significant amount of time responding to my email inquiries regarding herpesvirus virion structure/function and Dr. James Conway for teaching me how to use the Chimera software package. I also thank Gina Daniel for editing the manuscript. The electron micrograph was provided by Dr. Kevin Bohannon who performed imaging at the Northwestern University Center for Advanced Microscopy, which is generously supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. I received support from NIH grant R01 AI056346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Smith Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smith, G.A. (2017). Assembly and Egress of an Alphaherpesvirus Clockwork. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics