Skip to main content

Herpesvirus Capsid Assembly and DNA Packaging

  • Chapter
  • First Online:
Cell Biology of Herpes Viruses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies 1 of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25, and pUL36, binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbotts AP, Preston VG, Hughes M, Patel AH, Stow ND (2000) Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J Gen Virol 81(Pt 12):2999–3009

    Article  CAS  PubMed  Google Scholar 

  • Addison C, Rixon FJ, Palfreyman JW, O’Hara M, Preston VG (1984) Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138(2):246–259

    Article  CAS  PubMed  Google Scholar 

  • Addison C, Rixon FJ, Preston VG (1990) Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J Gen Virol 71(Pt 10):2377–2384

    Article  CAS  PubMed  Google Scholar 

  • Adelman K, Salmon B, Baines JD (2001) Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci USA 98(6):3086–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksyuk AA, Newcomb WW, Cheng N, Winkler DC, Fontana J, Heymann JB, Steven AC (2015) Subassemblies and asymmetry in assembly of herpes simplex virus procapsid. MBio 6(5):e01525–01515

    Article  CAS  Google Scholar 

  • al-Kobaisi MF, Rixon FJ, McDougall I, Preston VG (1991) The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology 180(1):380–388

    Article  CAS  PubMed  Google Scholar 

  • Albright BS, Nellissery J, Szczepaniak R, Weller SK (2011) Disulfide bond formation in the herpes simplex virus 1 UL6 protein is required for portal ring formation and genome encapsidation. J Virol 85(17):8616–8624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albright BS, Kosinski A, Szczepaniak R, Cook EA, Stow ND, Conway JF, Weller SK (2015) The putative herpes simplex virus 1 chaperone protein UL32 modulates disulfide bond formation during infection. J Virol 89(1):443–453

    Article  PubMed  CAS  Google Scholar 

  • Baines JD, Weller SK (2005) Cleavage and packaging of herpes simplex virus 1 DNA, herpesvirus assembly. In: Catalano CE (ed) Viral genome packaging machines: genetics, structure, and mechanism. Kluwer Academic Press, New York, pp 135–150

    Chapter  Google Scholar 

  • Baines JD, Poon AP, Rovnak J, Roizman B (1994) The herpes simplex virus 1 UL15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J Virol 68(12):8118–8124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baines JD, Cunningham C, Nalwanga D, Davison A (1997) The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product. J Virol 71(4):2666–2673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazinet C, King J (1985) The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol 39:109–129

    Article  CAS  PubMed  Google Scholar 

  • Beard PM, Baines JD (2004) The DNA cleavage and packaging protein encoded by the UL33 gene of herpes simplex virus 1 associates with capsids. Virology 324(2):475–482

    Article  CAS  PubMed  Google Scholar 

  • Beard PM, Taus NS, Baines JD (2002) DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J Virol 76(10):4785–4791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard PM, Duffy C, Baines JD (2004) Quantification of the DNA cleavage and packaging proteins U(L)15 and U(L)28 in a and B capsids of herpes simplex virus type 1. J Virol 78(3):1367–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilstein F, Higgs MR, Stow ND (2009) Mutational analysis of the herpes simplex virus type 1 DNA packaging protein UL33. J Virol 83(17):8938–8945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogner E, Radsak K, Stinski MF (1998) The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 72(3):2259–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booy FP, Newcomb WW, Trus BL, Brown JC, Baker TS, Steven AC (1991) Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64(5):1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booy FP, Trus BL, Newcomb WW, Brown JC, Conway JF, Steven AC (1994) Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci USA 91(12):5652–5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst EM, Kleine-Albers J, Gabaev I, Babic M, Wagner K, Binz A, Degenhardt I, Kalesse M, Jonjic S, Bauerfeind R, Messerle M (2013) The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol 87(3):1720–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JC, Newcomb WW (2011) Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol 1(2):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JC, McVoy MA, Homa FL (2002) Packaging DNA into herpesvirus capsids. In: Bogner AHE (ed) Structure–function relationships of human pathogenic viruses. Kluwer Acacdemic Press, New York, pp 111–155

    Chapter  Google Scholar 

  • Cardone G, Winkler DC, Trus BL, Cheng N, Heuser JE, Newcomb WW, Brown JC, Steven AC (2007) Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology 361(2):426–434

    Article  CAS  PubMed  Google Scholar 

  • Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24

    Article  CAS  PubMed  Google Scholar 

  • Catalano CE (2005) Viral genome packaging machines: genetics, structure, and mechanism. Kluwer Academic Press, New York

    Book  Google Scholar 

  • Cavalcoli JD, Baghian A, Homa FL, Kousoulas KG (1993) Resolution of genotypic and phenotypic properties of herpes simplex virus type 1 temperature-sensitive mutant (KOS) tsZ47: evidence for allelic complementation in the UL28 gene. Virology 197(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Champier G, Couvreux A, Hantz S, Rametti A, Mazeron MC, Bouaziz S, Denis F, Alain S (2008) Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity. Antivir Ther 13(5):643–654

    CAS  PubMed  Google Scholar 

  • Chang YE, Poon AP, Roizman B (1996) Properties of the protein encoded by the UL32 open reading frame of herpes simplex virus 1. J Virol 70(6):3938–3946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JT, Schmid MF, Rixon FJ, Chiu W (2007) Electron cryotomography reveals the portal in the herpesvirus capsid. J Virol 81(4):2065–2068

    Article  CAS  PubMed  Google Scholar 

  • Church GA, Wilson DW (1997) Study of herpes simplex virus maturation during a synchronous wave of assembly. J Virol 71(5):3603–3612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockrell SK, Sanchez ME, Erazo A, Homa FL (2009) Role of the UL25 protein in herpes simplex virus DNA encapsidation. J Virol 83(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Cockrell SK, Huffman JB, Toropova K, Conway JF, Homa FL (2011) Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol 85(10):4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller KE, Lee JI, Ueda A, Smith GA (2007) The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81(21):11790–11797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway JF, Homa FL (2011) Nucleocapsid structure, assembly and DNA packaging of herpes simplex virus. In: Weller SK (ed) Alphaherpesviruses: molecular virology. Caister Academic Press, Norfolk, pp 175–193

    Google Scholar 

  • Conway JF, Cockrell SK, Copeland AM, Newcomb WW, Brown JC, Homa FL (2010) Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. J Mol Biol 397(2):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RH, Draper KG, Kelly TJ, Wagner EK (1985) An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. J Virol 54(2):317–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Gong D, Wu TT, Sun R, Zhou ZH (2014) Organization of capsid-associated tegument components in Kaposi’s sarcoma-associated herpesvirus. J Virol 88(21):12694–12702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasgupta A, Wilson DW (1999) ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. J Virol 73(3):2006–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davison AJ (1992) Channel catfish virus: a new type of herpesvirus. Virology 186(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Davison AJ, Wilkie NM (1981) Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J Gen Virol 55(Pt 2):315–331

    Article  CAS  PubMed  Google Scholar 

  • Davison MD, Rixon FJ, Davison AJ (1992) Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. J Gen Virol 73(Pt 10):2709–2713

    Article  CAS  PubMed  Google Scholar 

  • Davison AJ, Dargan DJ, Stow ND (2002) Fundamental and accessory systems in herpesviruses. Antivir Res 56(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Deiss LP, Frenkel N (1986) Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J Virol 57(3):933–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deiss LP, Chou J, Frenkel N (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol 59(3):605–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan A, Jamieson FE, Cunningham C, Barnett BC, McGeoch DJ (1998) The genome sequence of herpes simplex virus type 2. J Virol 72(3):2010–2021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Draper B, Rao VB (2007) An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. J Mol Biol 369(1):79–94

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg RJ, Heldwein EE, Cohen GH, Krummenacher C (2011) Recent progress in understanding herpes simplex virus entry: relationship of structure to function. In: Weller SK (ed) Alphaherpesviruses: molecular virology. Caister Academic Press, Norfolk, pp 131–152

    Google Scholar 

  • Fan WH, Roberts AP, McElwee M, Bhella D, Rixon FJ, Lauder R (2015) The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol 89(3):1502–1511

    Article  PubMed  CAS  Google Scholar 

  • Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Rutenberg C, Suthram S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong YA, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J (2009) Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog 5(9):e1000570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs W, Klupp BG, Granzow H, Leege T, Mettenleiter TC (2009) Characterization of pseudorabies virus (PrV) cleavage-encapsidation proteins and functional complementation of PrV pUL32 by the homologous protein of herpes simplex virus type 1. J Virol 83(8):3930–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlong D, Swift H, Roizman B (1972) Arrangement of herpesvirus deoxyribonucleic acid in the core. J Virol 10(5):1071–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson W, Roizman B (1972) Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10(5):1044–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goshima F, Watanabe D, Takakuwa H, Wada K, Daikoku T, Yamada M, Nishiyama Y (2000) Herpes simplex virus UL17 protein is associated with B capsids and colocalizes with ICP35 and VP5 in infected cells. Arch Virol 145(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • Grunewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302(5649):1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Heming JD, Huffman JB, Jones LM, Homa FL (2014) Isolation and characterization of the herpes simplex virus 1 terminase complex. J Virol 88(1):225–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Biol 10(5):334–341

    Article  CAS  PubMed  Google Scholar 

  • Higgs MR, Preston VG, Stow ND (2008) The UL15 protein of herpes simplex virus type 1 is necessary for the localization of the UL28 and UL33 proteins to viral DNA replication centres. J Gen Virol 89(Pt 7):1709–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge PD, Stow ND (2001) Effects of mutations within the herpes simplex virus type 1 DNA encapsidation signal on packaging efficiency. J Virol 75(19):8977–8986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homa FL, Brown JC (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7(2):107–122

    Article  CAS  PubMed  Google Scholar 

  • Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM, Conway JF (2013) Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 425(18):3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF (2016) Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 23(6):531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman JB, Newcomb WW, Brown JC, Homa FL (2008) Amino acids 143 to 150 of the herpes simplex virus type 1 scaffold protein are required for the formation of portal-containing capsids. J Virol 82(13):6778–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JG, Yang K, Baines JD, Homa FL (2006) Linker insertion mutations in the herpes simplex virus type 1 UL28 gene: effects on UL28 interaction with UL15 and UL33 and identification of a second-site mutation in the UL15 gene that suppresses a lethal UL28 mutation. J Virol 80(24):12312–12323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieff ED, Bachenheimer SL, Roizman B (1971) Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J Virol 8(2):125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koslowski KM, Shaver PR, Wang XY, Tenney DJ, Pederson NE (1997) The pseudorabies virus UL28 protein enters the nucleus after coexpression with the herpes simplex virus UL15 protein. J Virol 71(12):9118–9123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koslowski KM, Shaver PR, Casey JT II, Wilson T, Yamanaka G, Sheaffer AK, Tenney DJ, Pederson NE (1999) Physical and functional interactions between the herpes simplex virus UL15 and UL28 DNA cleavage and packaging proteins. J Virol 73(2):1704–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krosky PM, Underwood MR, Turk SR, Feng KW, Jain RK, Ptak RG, Westerman AC, Biron KK, Townsend LB, Drach JC (1998) Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J Virol 72(6):4721–4728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamberti C, Weller SK (1996) The herpes simplex virus type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 226(2):403–407

    Article  CAS  PubMed  Google Scholar 

  • Lamberti C, Weller SK (1998) The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J Virol 72(3):2463–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu FY, Roizman B (1991) The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol 65(10):5149–5156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Roizman B (1993) Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol 67(3):1300–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Locker H, Frenkel N (1979) BamI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. J Virol 32(2):429–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loret S, Guay G, Lippe R (2008) Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82(17):8605–8618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez R, Sarisky RT, Weber PC, Weller SK (1996) Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol 70(4):2075–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69(Pt 7):1531–1574

    Article  CAS  PubMed  Google Scholar 

  • McNab AR, Desai P, Person S, Roof LL, Thomsen DR, Newcomb WW, Brown JC, Homa FL (1998) The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol 72(2):1060–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mocarski ES, Roizman B (1981) Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc Natl Acad Sci USA 78(11):7047–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Mocarski ES, Deiss LP, Frenkel N (1985) Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J Virol 55(1):140–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal M, Mas PJ, Blanco AG, Arnan C, Sola M, Hart DJ, Coll M (2010) Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA 107(37):16078–16083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasseri M, Mocarski ES (1988) The cleavage recognition signal is contained within sequences surrounding an a-a junction in herpes simplex virus DNA. Virology 167(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Nellissery JK, Szczepaniak R, Lamberti C, Weller SK (2007) A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation. J Virol 81(17):8868–8877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Brown JC (1991) Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol 65(2):613–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Trus BL, Booy FP, Steven AC, Wall JS, Brown JC (1993) Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232(2):499–511

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Ye Z, Brown JC (1994) Cell-free assembly of the herpes simplex virus capsid. J Virol 68(9):6059–6063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, Spencer JV, Brown JC (1996) Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J Mol Biol 263(3):432–446

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Trus BL, Cheng N, Steven A, Booy F, Brown JC (1999) Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 73(5):4239–4250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Trus BL, Cheng N, Steven AC, Sheaffer AK, Tenney DJ, Weller SK, Brown JC (2000) Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J Virol 74(4):1663–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75(22):10923–10932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Thomsen DR, Homa FL, Brown JC (2003) Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 77(18):9862–9871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Homa FL, Brown JC (2005) Involvement of the portal at an early step in herpes simplex virus capsid assembly. J Virol 79(16):10540–10546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Homa FL, Brown JC (2006) Herpes simplex virus capsid structure: DNA packaging protein UL25 is located on the external surface of the capsid near the vertices. J Virol 80(13):6286–6294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Cockrell SK, Homa FL, Brown JC (2009) Polarized DNA ejection from the herpesvirus capsid. J Mol Biol 392(4):885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AH, MacLean JB (1995) The product of the UL6 gene of herpes simplex virus type 1 is associated with virus capsids. Virology 206(1):465–478

    Article  CAS  PubMed  Google Scholar 

  • Patel AH, Rixon FJ, Cunningham C, Davison AJ (1996) Isolation and characterization of herpes simplex virus type 1 mutants defective in the UL6 gene. Virology 217(1):111–123

    Article  CAS  PubMed  Google Scholar 

  • Pellet PE, Roizman B (2007) The family Herpesviridae: a brief introduction. In: Knipe DM, Howley PM (eds) Fields virology, vol II, 5th edn. Wolters Kluwer Health, Philadelphia, PA, pp 2479–2499

    Google Scholar 

  • Perdue ML, Cohen JC, Randall CC, O’Callaghan DJ (1976) Biochemical studies of the maturation of herpesvirus nucleocapsid species. Virology 74(1):194–208

    Article  CAS  PubMed  Google Scholar 

  • Poon AP, Roizman B (1993) Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J Virol 67(8):4497–4503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preston VG, Coates JA, Rixon FJ (1983) Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol 45(3):1056–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preston VG, Murray J, Preston CM, McDougall IM, Stow ND (2008) The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome. J Virol 82(13):6654–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przech AJ, Yu D, Weller SK (2003) Point mutations in exon I of the herpes simplex virus putative terminase subunit, UL15, indicate that the most conserved residues are essential for cleavage and packaging. J Virol 77(17):9613–9621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Fan Y, Baines JD (2000) Characterization of the U(L)33 gene product of herpes simplex virus 1. Virology 266(2):310–318

    Article  CAS  PubMed  Google Scholar 

  • Rixon FJ, McNab D (1999) Packaging-competent capsids of a herpes simplex virus temperature-sensitive mutant have properties similar to those of in vitro-assembled procapsids. J Virol 73(7):5714–5721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rixon FJ, Cross AM, Addison C, Preston VG (1988) The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J Gen Virol 69(Pt 11):2879–2891

    Article  CAS  PubMed  Google Scholar 

  • Roizman B (1979a) The organization of the herpes simplex virus genomes. Annu Rev Genet 13:25–57

    Article  CAS  PubMed  Google Scholar 

  • Roizman B (1979b) The structure and isomerization of herpes simplex virus genomes. Cell 16(3):481–494

    Article  CAS  PubMed  Google Scholar 

  • Salmon B, Baines JD (1998) Herpes simplex virus DNA cleavage and packaging: association of multiple forms of U(L)15-encoded proteins with B capsids requires at least the U(L)6, U(L)17, and U(L)28 genes. J Virol 72(4):3045–3050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon B, Cunningham C, Davison AJ, Harris WJ, Baines JD (1998) The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol 72(5):3779–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer PA, Aron GM, Biswal N, Benyesh-Melnick M (1973) Temperature-sensitive mutants of herpes simplex virus type 1: isolation, complementation and partial characterization. Virology 52(1):57–71

    Article  CAS  PubMed  Google Scholar 

  • Scheffczik H, Savva CG, Holzenburg A, Kolesnikova L, Bogner E (2002) The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res 30(7):1695–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrag JD, Prasad BV, Rixon FJ, Chiu W (1989) Three-dimensional structure of the HSV1 nucleocapsid. Cell 56(4):651–660

    Article  CAS  PubMed  Google Scholar 

  • Sciortino MT, Suzuki M, Taddeo B, Roizman B (2001) RNAs extracted from herpes simplex virus 1 virions: apparent selectivity of viral but not cellular RNAs packaged in virions. J Virol 75(17):8105–8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvarajan Sigamani S, Zhao H, Kamau YN, Baines JD, Tang L (2013) The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J Virol 87(12):7140–7148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Severini A, Morgan AR, Tovell DR, Tyrrell DL (1994) Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200(2):428–435

    Article  CAS  PubMed  Google Scholar 

  • Sheaffer AK, Newcomb WW, Gao M, Yu D, Weller SK, Brown JC, Tenney DJ (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 75(2):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman G, Bachenheimer SL (1987) DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158(2):427–430

    Article  CAS  PubMed  Google Scholar 

  • Sherman G, Bachenheimer SL (1988) Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163(2):471–480

    Article  CAS  PubMed  Google Scholar 

  • Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown JC (2005) Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J Virol 79(1):132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaete RR, Frenkel N (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30(1):295–304

    Article  CAS  PubMed  Google Scholar 

  • Spaete RR, Frenkel N (1985) The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc Natl Acad Sci USA 82(3):694–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear PG, Roizman B (1967) Buoyant density of herpes simplex virus in solutions of caesium chloride. Nature 214(5089):713–714

    Article  CAS  PubMed  Google Scholar 

  • Spear PG, Roizman B (1972) Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion. J Virol 9(1):143–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stow ND (2001) Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J Virol 75(22):10755–10765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stow ND, McMonagle EC (1983) Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130(2):427–438

    Article  CAS  PubMed  Google Scholar 

  • Stow ND, McMonagle EC, Davison AJ (1983) Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Res 11(23):8205–8220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ (1994) Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol 75(Pt 5):1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Taus NS, Baines JD (1998) Herpes simplex virus 1 DNA cleavage/packaging: the UL28 gene encodes a minor component of B capsids. Virology 252(2):443–449

    Article  CAS  PubMed  Google Scholar 

  • Tengelsen LA, Pederson NE, Shaver PR, Wathen MW, Homa FL (1993) Herpes simplex virus type 1 DNA cleavage and encapsidation require the product of the UL28 gene: isolation and characterization of two UL28 deletion mutants. J Virol 67(6):3470–3480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma C, Borst E, Messerle M, Rieger M, Hwang JS, Bogner E (2006) Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus. Biochemistry 45(29):8855–8863

    Article  CAS  PubMed  Google Scholar 

  • Thomsen DR, Roof LL, Homa FL (1994) Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol 68(4):2442–2457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurlow JK, Rixon FJ, Murphy M, Targett-Adams P, Hughes M, Preston VG (2005) The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J Virol 79(1):150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurlow JK, Murphy M, Stow ND, Preston VG (2006) Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 80(5):2118–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toropova K, Huffman JB, Homa FL, Conway JF (2011) The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 85(15):7513–7522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, Steven AC (1996) The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol 263(3):447–462

    Article  CAS  PubMed  Google Scholar 

  • Trus BL, Cheng N, Newcomb WW, Homa FL, Brown JC, Steven AC (2004) Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J Virol 78(22):12668–12671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, Brown JC, Steven AC (2007) Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26(4):479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umene K, Oohashi S, Yoshida M, Fukumaki Y (2008) Diversity of the a sequence of herpes simplex virus type 1 developed during evolution. J Gen Virol 89(Pt 4):841–852

    Article  CAS  PubMed  Google Scholar 

  • Underwood MR, Harvey RJ, Stanat SC, Hemphill ML, Miller T, Drach JC, Townsend LB, Biron KK (1998) Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J Virol 72(1):717–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Genderen IL, Brandimarti R, Torrisi MR, Campadelli G, van Meer G (1994) The phospholipid composition of extracellular herpes simplex virions differs from that of host cell nuclei. Virology 200(2):831–836

    Article  PubMed  Google Scholar 

  • Varmuza SL, Smiley JR (1985) Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41(3):793–802

    Article  CAS  PubMed  Google Scholar 

  • Visalli RJ, Nicolosi DM, Irven KL, Goshorn B, Khan T, Visalli MA (2007) The varicella-zoster virus DNA encapsidation genes: identification and characterization of the putative terminase subunits. Virus Res 129(2):200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visalli RJ, Knepper J, Goshorn B, Vanover K, Burnside DM, Irven K, McGauley R, Visalli M (2009) Characterization of the varicella-zoster virus ORF25 gene product: pORF25 interacts with multiple DNA encapsidation proteins. Virus Res 144(1–2):58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizoso Pinto MG, Pothineni VR, Haase R, Woidy M, Lotz-Havla AS, Gersting SW, Muntau AC, Haas J, Sommer M, Arvin AM, Baiker A (2011) Varicella zoster virus ORF25 gene product: an essential hub protein linking encapsidation proteins and the nuclear egress complex. J Proteome Res 10(12):5374–5382

    Article  CAS  PubMed  Google Scholar 

  • Vlazny DA, Kwong A, Frenkel N (1982) Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc Natl Acad Sci USA 79(5):1423–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadsworth S, Jacob RJ, Roizman B (1975) Anatomy of herpes simplex virus DNA. II. Size, composition, and arrangement of inverted terminal repetitions. J Virol 15(6):1487–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner MJ, Summers WC (1978) Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. J Virol 27(2):374–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JB, Zhu Y, McVoy MA, Parris DS (2012) Changes in subcellular localization reveal interactions between human cytomegalovirus terminase subunits. Virol J 9:315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weller SK, Carmichael EP, Aschman DP, Goldstein DJ, Schaffer PA (1987) Genetic and phenotypic characterization of mutants in four essential genes that map to the left half of HSV-1 UL DNA. Virology 161(1):198–210

    Article  CAS  PubMed  Google Scholar 

  • White CA, Stow ND, Patel AH, Hughes M, Preston VG (2003) Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J Virol 77(11):6351–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildy P, Russell WC, Horne RW (1960) The morphology of herpes virus. Virology 12:204–222

    Article  CAS  PubMed  Google Scholar 

  • Wills E, Scholtes L, Baines JD (2006) Herpes simplex virus 1 DNA packaging proteins encoded by UL6, UL15, UL17, UL28, and UL33 are located on the external surface of the viral capsid. J Virol 80(21):10894–10899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Baines JD (2006) The putative terminase subunit of herpes simplex virus 1 encoded by UL28 is necessary and sufficient to mediate interaction between pUL15 and pUL33. J Virol 80(12):5733–5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Baines JD (2008) Domain within herpes simplex virus 1 scaffold proteins required for interaction with portal protein in infected cells and incorporation of the portal vertex into capsids. J Virol 82(10):5021–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Homa F, Baines JD (2007) Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J Virol 81(12):6419–6433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Poon AP, Roizman B, Baines JD (2008) Temperature-sensitive mutations in the putative herpes simplex virus type 1 terminase subunits pUL15 and pUL33 preclude viral DNA cleavage/packaging and interaction with pUL28 at the nonpermissive temperature. J Virol 82(1):487–494

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Wills E, Baines JD (2009) The putative leucine zipper of the UL6-encoded portal protein of herpes simplex virus 1 is necessary for interaction with pUL15 and pUL28 and their association with capsids. J Virol 83(9):4557–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Wills EG, Baines JD (2011) A mutation in UL15 of herpes simplex virus 1 that reduces packaging of cleaved genomes. J Virol 85(22):11972–11980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Weller SK (1998a) Genetic analysis of the UL 15 gene locus for the putative terminase of herpes simplex virus type 1. Virology 243(1):32–44

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Weller SK (1998b) Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J Virol 72(9):7428–7439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Sheaffer AK, Tenney DJ, Weller SK (1997) Characterization of ICP6::lacZ insertion mutants of the UL15 gene of herpes simplex virus type 1 reveals the translation of two proteins. J Virol 71(4):2656–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Efstathiou S, Simmons A (1994) Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202(2):530–539

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZH, Prasad BV, Jakana J, Rixon FJ, Chiu W (1994) Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J Mol Biol 242(4):456–469

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W (1999) Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73(4):3210–3218

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research in the laboratories of F.L.H. and J.F.C. was supported by National Institutes of Health awards (AI060836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred L. Homa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Heming, J.D., Conway, J.F., Homa, F.L. (2017). Herpesvirus Capsid Assembly and DNA Packaging. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics