Skip to main content

Nanomaterials for Adsorption and Heterogeneous Reaction in Water Decontamination

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

In recent decades, nanomaterials have been intensively studied for water decontamination, especially for contaminants of emerging concern. Details are provided on a series of engineered nanomaterials for water decontamination by the mechanisms of adsorption, heterogeneous oxidation, and reduction. The degradation, mineralization, and detoxification of various organic contaminants and removal of several inorganic pollutants in aqueous environment by nanomaterials, evaluation of the feasibility of applying nanotechnologies in water industry are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleye AS et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  Google Scholar 

  • Akhavan O (2011) Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49(1):11–18

    Article  Google Scholar 

  • Alonso F, Beletskaya IP, Yus M (2002) Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev 102(11):4009–4091

    Article  Google Scholar 

  • Amir A, Lee W (2012) Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite. J Hazard Mater 235–236:359–366

    Article  Google Scholar 

  • Baker JR (2001) Nanomaterial antimicrobial agents. Abstr Pap Am Chem Soc 221:616–617

    Google Scholar 

  • Barnes RJ et al (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562

    Article  Google Scholar 

  • Bezbaruah AN et al (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166(2–3):1339–1343

    Article  Google Scholar 

  • Bezbaruah AN et al (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13(12):6673–6681

    Article  Google Scholar 

  • Bezbaruah AN et al (2013) Ca-alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J Nanopart Res 16(1):2175

    Google Scholar 

  • Bhaumik M et al (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82

    Article  Google Scholar 

  • Bhaumik M et al (2015a) Polyaniline/Fe-0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem Eng J 271:135–146

    Article  Google Scholar 

  • Bhaumik M, McCrindle RI, Maity A (2015b) Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chem Eng J 260:716–729

    Article  Google Scholar 

  • Bi Y, Hayes KF (2014) Nano-FeS inhibits UO2 reoxidation under varied oxic conditions. Environ Sci Technol 48(1):632–640

    Article  Google Scholar 

  • Bi Y et al (2013) Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite. Geochim Cosmochim Acta 102:175–190

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31(12):3348–3357

    Article  Google Scholar 

  • Bogardi JJ et al (2012) Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr Opin Environ Sustain 4(1):35–43

    Article  Google Scholar 

  • Bogdanovic U et al (2015) Nanomaterial with high antimicrobial efficacy-copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7(3):1955–1966

    Article  Google Scholar 

  • Bokare AD et al (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B Environ 79(3):270–278

    Article  Google Scholar 

  • Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Article  Google Scholar 

  • Brady-Estevez AS, Seoktae K, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484

    Article  Google Scholar 

  • Brady-Estévez AS et al (2010) Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res 44(13):3773–3780

    Article  Google Scholar 

  • Cao JS et al (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3):565–571

    Article  Google Scholar 

  • Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287

    Article  Google Scholar 

  • Casey FXM, Ong SK, Horton R (2000) Degradation and transformation of trichloroethylene in miscible displacement experiments through zerovalent metals. Environ Sci Technol 34(23):5023–5029

    Article  Google Scholar 

  • Chang RM, Kauffman RJ, Kwon Y (2014) Understanding the paradigm shift to computational social science in the presence of big data. Decis Support Syst 63:67–80

    Article  Google Scholar 

  • Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300

    Article  Google Scholar 

  • Chen W et al (2008a) Adsorption of hydroxyl- and amino-substituted aromatics to carbon manotubes. Environ Sci Technol 42(18):6862–6868

    Article  Google Scholar 

  • Chen J, Chen W, Zhu D (2008b) Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environ Sci Technol 42(19):7225–7230

    Article  Google Scholar 

  • Chen SY, Chen WH, Shih CJ (2008c) Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Sci Technol 58(10):1947–1954

    Article  Google Scholar 

  • Chen CL, Wang XK, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43(7):2362–2367

    Article  Google Scholar 

  • Chen SS et al (2014a) Dechlorination of tetrachloroethylene in water using stabilized nanoscale iron and palladized iron particles. Desalination Water Treat 52(4–6):702–711

    Article  Google Scholar 

  • Chen WF et al (2014b) Dechlorination of hexachlorobenzene by nano zero-valent iron/activated carbon composite: iron loading, kinetics and pathway. RSC Adv 4(87):46689–46696

    Article  Google Scholar 

  • Chen Q, Xin Y, Zhu X (2015) Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim Acta 186:34–42

    Article  Google Scholar 

  • Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144(1–2):334–339

    Article  Google Scholar 

  • Cheng R et al (2010) Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J Hazard Mater 180(1–3):79–85

    Article  Google Scholar 

  • Choe S et al (2001) Rapid reductive destruction of hazardous organic compounds by nanoscale Fe-0. Chemosphere 42(4):367–372

    Article  Google Scholar 

  • Chong MN et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Crane RA et al (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942

    Article  Google Scholar 

  • Cui XJ et al (2010) Molecular characteristics and functional analysis of full-length hepatitis B virus quasispecies from a patient with chronic hepatitis B virus infection. Virus Res 150(1–2):43–48

    Article  Google Scholar 

  • Cui H et al (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427

    Google Scholar 

  • Cui H et al (2013) Exceptional arsenic (III, V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res 47(16):6258–6268

    Article  Google Scholar 

  • Daer S et al (2015) Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48

    Article  Google Scholar 

  • Deng BL, Burris DR, Campbell TJ (1999) Reduction of vinyl chloride in metallic iron-water systems. Environ Sci Technol 33(15):2651–2656

    Article  Google Scholar 

  • Deng N et al (2000) Discoloration of aqueous reactive dye solutions in the UV/Fe-0 system. Water Res 34(8):2408–2411

    Article  Google Scholar 

  • Deng L et al (2016) SnS2/TiO2 nanocomposites with enhanced visible light-driven photoreduction of aqueous Cr(VI). Ceram Int 42(3):3808–3815

    Article  Google Scholar 

  • Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76

    Article  Google Scholar 

  • Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178(1–3):171–179

    Article  Google Scholar 

  • Dries J et al (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39(21):8460–8465

    Article  Google Scholar 

  • Dursun AY, Kalayci CS (2005) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater 123(1–3):151–157

    Article  Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Abstr Pap Am Chem Soc 35(24):4922–4926

    Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18(3):386–395

    Article  Google Scholar 

  • Fagan SB et al (2004) 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Lett 4(7):1285–1288

    Article  Google Scholar 

  • Fan J et al (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166(2–3):904–910

    Article  Google Scholar 

  • Fan FL et al (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  Google Scholar 

  • Fang ZQ et al (2011a) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268(1–3):60–67

    Article  Google Scholar 

  • Fang ZQ et al (2011b) Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination 267(1):34–41

    Article  Google Scholar 

  • Farghali AA et al (2013) Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci 2(2):61–71

    Article  Google Scholar 

  • Feng Q et al (2012) Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Res Lett 7(84):1–8

    Google Scholar 

  • Forouzani M et al (2015) Comparative study of oxidation of benzyl alcohol: influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem Eng J 275:220–226

    Article  Google Scholar 

  • Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  Google Scholar 

  • Fu FL, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  Google Scholar 

  • Ghasemi Z et al (2012) Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution. Adv Powder Technol 23(2):148–156

    Article  Google Scholar 

  • Ghosh MK et al (2012) Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng 29(1):95–102

    Article  Google Scholar 

  • Gillham RW, Ohannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967

    Article  Google Scholar 

  • Gong Y et al (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23(29)

    Google Scholar 

  • Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320

    Article  Google Scholar 

  • Gotovac S et al (2007) Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. J Colloid Interface Sci 314(1):18–24

    Article  Google Scholar 

  • Grey D et al (2002) Water security in one blue planet: twenty-first century policy challenges for science. Philos Trans R Soc A Math Phys Eng Sci 2013:371

    Google Scholar 

  • Guasp E, Wei R (2003) Dehalogenation of trihalomethanes in drinking water on Pd-Fe bimetallic surface. J Chem Technol Biotechnol 78(6):654–658

    Article  Google Scholar 

  • Hao YM, Man C, Hu ZB (2010) Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184(1–3):392–399

    Article  Google Scholar 

  • Hartono T et al (2009) Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J Colloid Interface Sci 333(1):114–119

    Article  Google Scholar 

  • He Y et al (2012) The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chem Eng J 179:8–18

    Article  Google Scholar 

  • He J et al (2014) Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: role of the interface. Chem Eng J 258:433–441

    Article  Google Scholar 

  • Hoch LB et al (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42(7):2600–2605

    Article  Google Scholar 

  • Horzum N et al (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3(21):7828–7837

    Article  Google Scholar 

  • Hossain F et al (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059

    Article  Google Scholar 

  • Hou MF et al (2007) The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J Hazard Mater 145(1–2):305–314

    Article  Google Scholar 

  • Hou B et al (2015) Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation. J Taiwan Inst Chem Eng 3(4):1–11

    Google Scholar 

  • Hua M et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Huang C et al (2007) Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Sep Purif Technol 58(1):152–158

    Article  Google Scholar 

  • Huang L et al (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11(1):129–138

    Article  Google Scholar 

  • Huang Z et al (2011) Adsorption of Lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12):7558–7562

    Article  Google Scholar 

  • Huang Q et al (2013) Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J Hazard Mater 262:634–641

    Article  Google Scholar 

  • Hyun SP et al (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46(6):3369–3376

    Article  Google Scholar 

  • Jang SM et al (2004) Adsorption of 4-biphenylmethanethiolate on different-sized gold nanoparticle surfaces. Langmuir 20(5):1922–1927

    Article  Google Scholar 

  • Ji L et al (2009a) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25(19):11608–11613

    Article  Google Scholar 

  • Ji L et al (2009b) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43(7):2322–2327

    Article  Google Scholar 

  • Jo WK, Tayade RJ (2016) Facile photocatalytic reactor development using nano-TiO2 immobilized mosquito net and energy efficient UVLED for industrial dyes effluent treatment. J Environ Chem Eng 4(1):319–327

    Article  Google Scholar 

  • Joo SH et al (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39(5):1263–1268

    Article  Google Scholar 

  • Kalia S et al (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052

    Article  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  Google Scholar 

  • Kar S et al (2016) Classification of river water pollution using Hyperion data. J Hydrol 537:221–233

    Article  Google Scholar 

  • Kim E et al (2011) Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications. ACS Appl Mater Interfaces 3(5):1457–1462

    Article  Google Scholar 

  • Kim EJ et al (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634

    Article  Google Scholar 

  • Klimkova S et al (2008) Application of nanoscale zero-valent iron for groundwater remediation: laboratory and pilot experiments. NANO 3(4):287–289

    Article  Google Scholar 

  • Klimkova S et al (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82(8):1178–1184

    Article  Google Scholar 

  • Kocabas-Atakli ZO, Yurum Y (2013) Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem Eng J 225:625–635

    Article  Google Scholar 

  • Koutahzadeh N, Esfahani MR, Arce PE (2016) Removal of acid black 1 from water by the pulsed corona discharge advanced oxidation method. J Water Process Eng 10:1–8

    Article  Google Scholar 

  • Kritis AA et al (2016) Latest aspects of aldosterone actions on the heart muscle. J Physiol Pharmacol 67(1):21–30

    Google Scholar 

  • Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys 16(25):12741–12749

    Article  Google Scholar 

  • Kurian M, Nair DS (2014) Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions. J Water Process Eng 8:37–49

    Article  Google Scholar 

  • Lee CC, Doong RA (2014) Enhanced dechlorination of tetrachloroethylene by polyethylene glycol-coated zerovalent silicon in the presence of nickel ions. Appl Catal B Environ 144:182–188

    Article  Google Scholar 

  • Lee J, Kao H, Yang S (2014) Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16:3–8

    Google Scholar 

  • Li YH et al (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350(5–6):412–416

    Article  Google Scholar 

  • Li YH et al (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  Google Scholar 

  • Li YH et al (2003b) Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull 38(3):469–476

    Article  Google Scholar 

  • Li Q et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  Google Scholar 

  • Li J et al (2011a) Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem Eng J 166(2):551–558

    Article  Google Scholar 

  • Li YH et al (2011b) Adsorption of cationic red X-GRL from aqueous solutions by graphene: equilibrium, kinetics and thermodynamics study. Chem Biochem Eng Q 25(4):483–491

    Google Scholar 

  • Li YC, Li TL, Jin ZH (2011c) Stabilization of Fe-0 nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil. J Environ Sci 23(7):1211–1218

    Article  Google Scholar 

  • Li Y et al (2012a) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904

    Article  Google Scholar 

  • Li Z et al (2012b) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    Article  Google Scholar 

  • Li X et al (2012c) Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: high adsorption capability to azo dyes. Colloids Surf A Physicochem Eng Aspects 408:79–86

    Article  Google Scholar 

  • Li S et al (2014a) Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation. J Alloy Compd 616(31):227–234

    Article  Google Scholar 

  • Li W, Wang Y, Irini A (2014b) Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV—Fenton and identification of reactive oxygen species. Chem Eng J 244:1–8

    Article  Google Scholar 

  • Li SL et al (2014c) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123

    Article  Google Scholar 

  • Li SL et al (2014d) Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci Process Impacts 16(3):524–533

    Article  Google Scholar 

  • Li X et al (2015) The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J Colloid Interface Sci 452:89–97

    Article  Google Scholar 

  • Liang P, Shi TQ, Li J (2004) Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int J Environ Anal Chem 84(4):315–321

    Article  Google Scholar 

  • Liang L, Luo L, Zhang S (2011) Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids Surf A Physicochem Eng Aspects 384(1–3):126–130

    Article  Google Scholar 

  • Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng ASCE 125(11):1042–1047

    Article  Google Scholar 

  • Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng ASCE 131(1):4–10

    Article  Google Scholar 

  • Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B Environ 77(1–2):110–116

    Article  Google Scholar 

  • Lim TT, Feng J, Zhu BW (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41(4):875–883

    Article  Google Scholar 

  • Lin D, Xing B (2008) Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol 42(19):7254–7259

    Article  Google Scholar 

  • Lin YT, Weng CH, Chen FY (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64(1):26–30

    Article  Google Scholar 

  • Liu YQ, Lowry GV (2006) Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090

    Article  Google Scholar 

  • Liu YQ et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345

    Article  Google Scholar 

  • Liu TY et al (2010a) Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe2O3 nanoparticles. Water Sci Technol 61(11):2759–2767

    Article  Google Scholar 

  • Liu TY et al (2010b) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184(1–3):724–730

    Article  Google Scholar 

  • Liu F et al (2012a) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4(2):922–927

    Article  Google Scholar 

  • Liu T et al (2012b) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B Biointerfaces 90:197–203

    Article  Google Scholar 

  • Liu L et al (2013) Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J Chem Eng Data 58(2):209–216

    Article  Google Scholar 

  • Liu FL et al (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26(8):1751–1762

    Article  Google Scholar 

  • Liu Y et al (2015) Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter. Environ Sci Technol 49(13):7974–7980

    Article  Google Scholar 

  • Liu Y et al (2016) Optimized synthesis of FeS nanoparticles with a high Cr(VI) removal capability. J Nanomater

    Google Scholar 

  • Long T, Ramsburg CA (2011) Encapsulation of nZVI particles using a gum Arabic stabilized oil-in-water emulsion. J Hazard Mater 189(3):801–808

    Article  Google Scholar 

  • Losurdo M et al (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanopart Res 11(7):1521–1554

    Article  Google Scholar 

  • Lowry GV, Johnson KM (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38(19):5208–5216

    Article  Google Scholar 

  • Lu CY, Chiu HS (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61(4):1138–1145

    Article  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940

    Article  Google Scholar 

  • Lu C, Chung Y, Chang K (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39(6):1183–1189

    Article  Google Scholar 

  • Lv X et al (2012) Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J Colloid Interface Sci 369(1):460–469

    Article  Google Scholar 

  • Ma X et al (2010) A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catal Today 158(3–4):459–463

    Article  Google Scholar 

  • Ma J et al (2014) Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant. Physica E Low-Dimens Syst Nanostruct 58:24–29

    Article  Google Scholar 

  • Ma BW et al (2015) Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. Water Res 71:140–149

    Article  Google Scholar 

  • Machado FM et al (2011) Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192(3):1122–1131

    Article  Google Scholar 

  • Mahmoodi NM, Arami M (2009) Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B 94(1):20–24

    Article  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  Google Scholar 

  • Mikelsaar AV et al (2012) Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells. Cell Div 7(1):1–10

    Article  Google Scholar 

  • Mohammadi R, Kassaee MZ (2013) Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J Mol Catal A Chem 380:152–158

    Article  Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400

    Article  Google Scholar 

  • Mueller NC et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558

    Article  Google Scholar 

  • Nagpal V et al (2010) Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. J Hazard Mater 175(1–3):680–687

    Article  Google Scholar 

  • Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205

    Article  Google Scholar 

  • Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34(6):1837–1845

    Article  Google Scholar 

  • Nemecek J et al (2015) Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: a remedial pilot test. J Hazard Mater 300:670–679

    Article  Google Scholar 

  • Oleszczuk P, Pan B, Xing B (2009) Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol 43(24):9167–9173

    Article  Google Scholar 

  • Ong CS et al (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination

    Google Scholar 

  • Oskoei V et al (2015) Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J Mol Liq 213:374–380

    Article  Google Scholar 

  • Ozay O et al (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43(17):4403–4411

    Article  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  Google Scholar 

  • Pan JR et al (2012) Reductive catalysis of novel TiO2/Fe0 composite under UV irradiation for nitrate removal from aqueous solution. Sep Purif Technol 84:52–55

    Article  Google Scholar 

  • Pariti A et al (2014) Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation. Mater Res Express 1(3)

    Google Scholar 

  • Park CM et al (2016) Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater 309:133–150

    Article  Google Scholar 

  • Parshetti GK, Doong RA (2009) Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res 43(12):3086–3094

    Article  Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31(7):2039–2044

    Article  Google Scholar 

  • Peng XJ et al (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399–403

    Article  Google Scholar 

  • Perey JR et al (2002) Zero-valent iron pretreatment for enhancing the biodegradability of azo dyes. Water Environ Res 74(3):221–225

    Article  Google Scholar 

  • Peterson JW et al (2010) Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water. Chemosphere 80(11):1268–1273

    Article  Google Scholar 

  • Ponder SM et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13(2):479–486

    Article  Google Scholar 

  • Prasse C, Ternes T (2010) Removal of organic and inorganic pollutants and pathogens from wastewater and drinking water using nanoparticles—a review, pp 55–79

    Google Scholar 

  • Qu X et al (2013a) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013b) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  Google Scholar 

  • Raizada P et al (2014) Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl Catal A 486(1–2):159–169

    Article  Google Scholar 

  • Ravi S, Vadukumpully S (2016) Sustainable carbon nanomaterials: recent advances and its applications in energy and environmental remediation. J Environ Chem Eng 4(1):835–856

    Article  Google Scholar 

  • Ravikumar KVG et al (2016) A comparative study with biologically and chemically synthesized nZVI: applications in Cr(VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ Sci Pollut Res 23(3):2613–2627

    Article  Google Scholar 

  • Reinsch BC et al (2010) Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461

    Article  Google Scholar 

  • Revitt DM, Ellis JB (2016) Urban surface water pollution problems arising from misconnections. Sci Total Environ 551–552:163–174

    Article  Google Scholar 

  • Riba O et al (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72(16):4047–4057

    Article  Google Scholar 

  • Saikia J, Saha B, Das G (2011) Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. J Hazard Mater 186(1):575–582

    Article  Google Scholar 

  • Samadi M et al (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    Article  Google Scholar 

  • Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42(6):1984–1989

    Article  Google Scholar 

  • Scheinost AC et al (2008) X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. J Contam Hydrol 102(3–4):228–245

    Article  Google Scholar 

  • Schrick B et al (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147

    Article  Google Scholar 

  • Scott TB et al (2011) Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 186(1):280–287

    Article  Google Scholar 

  • Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Water Res 47(10):3411–3421

    Article  Google Scholar 

  • Sheela T, Nayaka YA (2012) Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem Eng J 191:123–131

    Article  Google Scholar 

  • Sheela T et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170

    Article  Google Scholar 

  • Shen YF et al (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68(3):312–319

    Article  Google Scholar 

  • Sheydaei M, Aber S, Khataee A (2014) Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. J Mol Catal A Chem 392(11):229–234

    Article  Google Scholar 

  • Shih YH, Tai YT (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoplarticles. Chemosphere 78(10):1200–1206

    Article  Google Scholar 

  • Shih YH, Hsu CY, Su YF (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76(3):268–274

    Article  Google Scholar 

  • Shih YH et al (2016) Concurrent oxidation and reduction of pentachlorophenol by bimetallic zerovalent Pd/Fe nanoparticles in an oxic water. J Hazard Mater 301:416–423

    Article  Google Scholar 

  • Shokri A, Mahanpoor K, Soodbar D (2016) Evaluation of a modified TiO2 (GO–B–TiO2) photo catalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design. J Environ Chem Eng 4(1):585–598

    Article  Google Scholar 

  • Shu HY et al (2007) Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. J Colloid Interface Sci 314(1):89–97

    Article  Google Scholar 

  • Sitko R et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42(16):5682–5689

    Article  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    Article  Google Scholar 

  • Smuleac V et al (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1–2):131–137

    Article  Google Scholar 

  • Soltani RDC et al (2016) Ultrasonically induced ZnO—biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem 28:69–78

    Article  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245

    Article  Google Scholar 

  • Song H, Carraway ER (2008) Catalytic hydrodechlorination of chlorinated ethenes by nanoscale zero-valent iron. Appl Catal B Environ 78(1–2):53–60

    Article  Google Scholar 

  • Staniszewska M, Graca B, Nehring I (2015) The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water—experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2. Chemosphere 145:535–542

    Article  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  Google Scholar 

  • Strongin D (2004) Environmental applications: treatment/remediation using nanotechnology: an overview, vol 890, pp 202–204

    Google Scholar 

  • Su F, Lu C, Hu S (2010) Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surf A Physicochem Eng Aspects 353(1):83–91

    Article  Google Scholar 

  • Su CM et al (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084

    Article  Google Scholar 

  • Sui Z et al (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22(18):8767–8771

    Article  Google Scholar 

  • Sumesh E, Bootharaju MS, Pradeep AT (2011) A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater 189(1–2):450–457

    Article  Google Scholar 

  • Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203:101–110

    Article  Google Scholar 

  • Sun SB et al (2013) Synthesis of N-doped ZnO nanoparticles with improved photocatalytical activity. Ceram Int 39(5):5197–5203

    Article  Google Scholar 

  • Sun SP et al (2014) Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid. Chem Eng J 244:44–49

    Article  Google Scholar 

  • Taha MR, Ibrahim AH (2014) Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J Environ Chem Eng 2(1):1–8

    Article  Google Scholar 

  • Tang NJ et al (2006) Highly stable carbon-coated Fe/SiO2 composites: synthesis, structure and magnetic properties. Carbon 44(3):423–427

    Article  Google Scholar 

  • Tang W et al (2011) Arsenic(III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192(1):131–138

    Google Scholar 

  • Tataru G, Popa M, Desbrieres J (2011) Magnetic microparticles based on natural polymers. Int J Pharm 404(1–2):83–93

    Article  Google Scholar 

  • Tayade RJ et al (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8(6):455–462

    Article  Google Scholar 

  • Tee YH, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44(18):7062–7070

    Article  Google Scholar 

  • Tee YH, Bachas L, Bhattacharyya D (2009) Degradation of trichloroethylene and dichlorobiphenyls by iron-based bimetallic nanoparticles. J Phys Chem C 113(22):9454–9464

    Article  Google Scholar 

  • Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26(35):6056–6068

    Article  Google Scholar 

  • ThanhThuy TT, Feng H, Cai Q (2013) Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J 223:379–387

    Article  Google Scholar 

  • Thinh NN et al (2013) Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater Sci Eng C Mater Biol Appl 33(3):1214–1218

    Article  Google Scholar 

  • Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27(3):227–232

    Article  Google Scholar 

  • Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185(1):140–147

    Article  Google Scholar 

  • Tripathi G, Clements M (2003) Adsorption of 2-mercaptopyrimidine on silver nanoparticles in water. J Phys Chem B 107(40):11125–11132

    Article  Google Scholar 

  • Tuutij Rvi T et al (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166(2–3):1415–1420

    Article  Google Scholar 

  • Vadahanambi S et al (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47(18):10510–10517

    Google Scholar 

  • Vivero-Escoto JL, Huang YT (2011) Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 12(6):3888–3927

    Article  Google Scholar 

  • Wahab R et al (2014) Enhance antimicrobial activity of ZnO nanomaterial’s (QDs and NPs) and their analytical applications. Physica E Low-Dimens Syst Nanostruct 62:111–117

    Article  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  Google Scholar 

  • Wang W et al (2006) Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65(8):1396–1404

    Article  Google Scholar 

  • Wang H et al (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Article  Google Scholar 

  • Wei JJ et al (2006) Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res 40(2):348–354

    Article  Google Scholar 

  • Wu LF, Ritchie SMC (2008) Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles. Environ Prog 27(2):218–224

    Article  Google Scholar 

  • Wu ZS et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  Google Scholar 

  • Wu R et al (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907–913

    Article  Google Scholar 

  • Xi YF, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron-A SEM, TEM and XPS study. Mater Res Bull 45(10):1361–1367

    Article  Google Scholar 

  • Xu Y, Zhang WX (2000) Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 39(7):2238–2244

    Article  Google Scholar 

  • Xu XH et al (2004) Catalytic dechlorination of 2,4-dichlorophenol in water by nanoscale Pd/Fe bimetallic system. Chin J Catal 25(2):138–142

    Google Scholar 

  • Xu XH et al (2009) Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination 242(1–3):346–354

    Article  Google Scholar 

  • Xu J, Wang L, Zhu Y (2012a) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425

    Article  Google Scholar 

  • Xu FY et al (2012b) Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ Sci Technol 46(8):4576–4582

    Article  Google Scholar 

  • Yan WL et al (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15(1):63–77

    Article  Google Scholar 

  • Yan JC et al (2015) Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol 175:269–274

    Article  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110(10):5989–6008

    Article  Google Scholar 

  • Yang S et al (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–29

    Article  Google Scholar 

  • Yang XJ et al (2015) Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans Nonferrous Met Soc China 25(2):504–509

    Article  Google Scholar 

  • Yang X et al (2016) Effect of phosphate on heterogeneous Fenton oxidation of catechol by nano-Fe3O4: inhibitor or stabilizer? J Environ Sci 39(1):69–76

    Article  Google Scholar 

  • Yin Y, Talapin D (2013) The chemistry of functional nanomaterials. Chem Soc Rev 42(7):2484–2487

    Article  Google Scholar 

  • Yirsaw BD et al (2015) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci

    Google Scholar 

  • Yu C et al (2011) Fe3O4 nano-whiskers by ultrasonic-aided reduction in concentrated NaOH solution. Particuology 9(1):86–90

    Article  Google Scholar 

  • Yu J et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482:241–251

    Article  Google Scholar 

  • Yuan W, Bi S, Cao M (2015) Formaldehyde molecule adsorbed on graphene: a first-principles study. Mater Rev 29(18):156–159

    Google Scholar 

  • Zeng T et al (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem 12(12):570–573

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40(4):387–395

    Article  Google Scholar 

  • Zhang WH, Quan X, Zhang ZY (2007) Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. J Environ Sci 19(3):362–366

    Article  Google Scholar 

  • Zhang L et al (2008) Studies on the capability and behavior of adsorption of thallium on nano-Al2O3. J Hazard Mater 157(2–3):352–357

    Article  Google Scholar 

  • Zhang L et al (2010a) Kinetic and thermodynamic studies of adsorption of gallium(III) on nano-TiO2. Rare Met 29(1):16–20

    Article  Google Scholar 

  • Zhang X et al (2010b) Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chem Eng J 158(3):566–570

    Article  Google Scholar 

  • Zhang D et al (2010c) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2(6):917–919

    Article  Google Scholar 

  • Zhang C, Yao Y, Chen SH (2014) Size-dependent surface energy density of typically fcc metallic nanomaterials. Comput Mater Sci 82:372–377

    Article  Google Scholar 

  • Zhao C et al (2010) Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. J Hazard Mater 176(1–3):884–892

    Article  Google Scholar 

  • Zhao G et al (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462

    Article  Google Scholar 

  • Zhao G et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41(20):6182–6188

    Article  Google Scholar 

  • Zhao C et al (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies. Appl Catal B Environ 134:83–92

    Article  Google Scholar 

  • Zhao C et al (2014) Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: comparison between TiO2 and TiO2/5A composite system. Chem Eng J 248:280–289

    Article  Google Scholar 

  • Zhou YM et al (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542

    Article  Google Scholar 

  • Zhu HJ et al (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596

    Article  Google Scholar 

  • Zhu J et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, C. et al. (2017). Nanomaterials for Adsorption and Heterogeneous Reaction in Water Decontamination. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_6

Download citation

Publish with us

Policies and ethics