Skip to main content

Nanomaterials for Water Remediation: Synthesis, Application and Environmental Fate

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

World Health Organization estimates that almost 1 billion people in the world have no access to potable water and that 2.6 billion people lack access to adequate sanitation (World Health Organization (WHO), in Meeting the MDG drinking water and sanitation target: a mid-term assessment of progress/WHO/UNICEF Joint Monitoring Programme, 2004). The high level of quality required to make possible the utilization of reclaimed water to fill this lack of resource leads into the necessity of adapting conventional treatment schemes to more restrictive requirements. Nanotechnology processes could represent one of the most useful options for the achievement of this goal. National Nanotechnology Initiative (NNI) defined nanotechnology as “the understanding and control of matter at dimension between approximately 1 and 100 nanometers (nm), where unique phenomena enable novel application not feasible when working with bulk materials or even single atoms or molecules”. The knowledge achieved in this field offers the possibility of using novel material in the treatment of surface water, groundwater and wastewater especially for the removal of heavy metals, organic and inorganic solutes and microorganism. Due to the generally new ambit of research, the scientific community is actively involved in the development of new strategies and novel nanomaterials synthesis. Thousands of scientific articles related to nanotechnology applications in water sanitation have been published in the last decade. On the basis of their function, nanomaterials can be easily classified as: nanosorbents, nanocatalysts and redox active nanoparticles, nanostructured and reactive membranes, bioactive nanoparticles. Literature about current research on nanomaterials, methods of synthesis and characterization are reviewed in this chapter. Moreover, possible environmental impacts related with their application are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque Júnior EC, Méndez MOA, Coutinho A dos R, Franco TT (2008) Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers. Mater Res 11:371–380. doi:10.1590/S1516-14392008000300023

  • Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41:476–486. doi:10.1016/j.watres.2006.10.011

    Article  Google Scholar 

  • Andersson M, Österlund L, Ljungström S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679. doi:10.1021/jp025715y

    Article  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health–lessons learned from four case studies. Environ Int 37:1143–1156. doi:10.1016/j.envint.2011.02.005

    Article  Google Scholar 

  • Baalousha M, Lead J, Ju-Nam Y (2011) Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems. Treatise Water Sci 81:89–129

    Article  Google Scholar 

  • Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:727496. doi:10.1155/2014/727496

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi:10.1126/science.1060928

    Article  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi:10.1016/j.colsurfb.2005.11.026

    Article  Google Scholar 

  • Bhattacharya D, Gupta RK (2008) Nanotechnology and potential of microorganisms

    Google Scholar 

  • Bhattacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317

    Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 2012:817187. doi:10.1155/2012/817187

    Article  Google Scholar 

  • Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746. doi:10.1080/10473289.2005.10464656

    Article  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. doi:10.1016/j.jhazmat.2010.11.029

    Article  Google Scholar 

  • Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40. doi:10.1016/S0011-9164(02)00469-1

    Article  Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves: structure

    Google Scholar 

  • Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi:10.1021/es052069i

    Article  Google Scholar 

  • Burda C, Lou Y, Chen X et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051. doi:10.1021/nl034332o

    Article  Google Scholar 

  • Chen J-P, Chiang Y (2010) Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol 10:7560–7564. doi:10.1166/jnn.2010.2829

    Article  Google Scholar 

  • Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545. doi:10.1021/jp806160g

    Article  Google Scholar 

  • Chen X, Feng X, Liu J et al (1999) Mercury separation and immobilization using self-assembled monolayers on mesoporous supports (SAMMS). Sep Sci Technol 34:1121–1132. doi:10.1080/01496399908951084

    Article  Google Scholar 

  • Chen X, Lam KF, Yeung KL (2011) Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents. Chem Eng J 172:728–734. doi:10.1016/j.cej.2011.06.042

    Article  Google Scholar 

  • Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. doi:10.1021/j100102a038

    Article  Google Scholar 

  • Choi H, Antoniou MG, Pelaez M et al (2007a) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535. doi:10.1021/es0709122

    Article  Google Scholar 

  • Choi H, Stathatos E, Dionysiou DD (2007b) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206. doi:10.1016/j.desal.2005.12.055

    Article  Google Scholar 

  • Choi O, Deng KK, Kim N-J et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi:10.1016/j.watres.2008.02.021

    Article  Google Scholar 

  • Chouyyok W, Wiacek RJ, Pattamakomsan K et al (2010) Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ Sci Technol 44:3073–3078. doi:10.1021/es100787m

    Article  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608. doi:10.1021/nl3012853

    Article  Google Scholar 

  • Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982. doi:10.1021/jp0685030

    Article  Google Scholar 

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434. doi:10.1021/jp709845u

    Article  Google Scholar 

  • Cravillon J, Münzer S, Lohmeier S-J et al (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework

    Google Scholar 

  • Cui D, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85. doi:10.1016/j.toxlet.2004.08.015

    Article  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998. doi:10.1021/es103302t

    Article  Google Scholar 

  • de Hartog JJ, Hoek G, Peters A et al (2003) Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am J Epidemiol 157:613–623

    Article  Google Scholar 

  • David M. Dotzauer, Jinhua Dai, Lei Sun A, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports

    Google Scholar 

  • Eriksson P (1988) Nanofiltration extends the range of membrane filtration. Environ Prog 7:58–62. doi:10.1002/ep.3300070116

    Article  Google Scholar 

  • Esteban-Cubillo A, Pecharromán C, Aguilar E et al (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212. doi:10.1007/s10853-006-0432-x

    Article  Google Scholar 

  • Feng X (1997) Functionalized monolayers on ordered mesoporous supports. Science 276(80–):923–926. doi:10.1126/science.276.5314.923

  • Feng X, Liu J, Fryxell GE (1997) Self-assembled mercaptan on mesoporous silica (SAMMS) technology of mercury removal and stabilization. Richland, WA

    Book  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Fryxell GE, Mattigod SV, Lin Y et al (2007) Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): the importance of ligand posture in functional nanomaterials. J Mater Chem 17:2863. doi:10.1039/b702422c

    Article  Google Scholar 

  • Fu J, Ji M, Wang Z et al (2006) A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. J Hazard Mater 131:238–242. doi:10.1016/j.jhazmat.2005.09.039

    Article  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. doi:10.1016/j.jhazmat.2013.12.062

    Article  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027. doi:10.1021/es0616534

    Article  Google Scholar 

  • Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967. doi:10.1111/j.1745-6584.1994.tb00935.x

    Article  Google Scholar 

  • Gin DL, Lu X, Nemade PR et al (2006) Recent advances in the design of polymerizable lyotropic liquid-crystal assemblies for heterogeneous catalysis and selective separations. Adv Funct Mater 16:865–878. doi:10.1002/adfm.200500280

    Article  Google Scholar 

  • Gopal K, Tripathy SS, Bersillon JL, Dubey SP (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140:1–6. doi:10.1016/j.jhazmat.2006.10.063

    Article  Google Scholar 

  • K. Goyal A, S. Johal E, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640–654. doi:10.2174/157341311796196772

  • Gu B, Phelps TJ, Liang L et al (1999) Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environ Sci Technol 33:2170–2177. doi:10.1021/es981077e

    Article  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chinese Sci Bull 56:1639–1657. doi:10.1007/s11434-011-4476-1

    Article  Google Scholar 

  • Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi:10.1016/j.tox.2005.05.007

    Article  Google Scholar 

  • Han H, Bai R (2009) Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res 48:2891–2898. doi:10.1021/ie801362a

    Article  Google Scholar 

  • Henmi M, Nakatsuji K, Ichikawa T et al (2012) Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater 24:2238–2241. doi:10.1002/adma.201200108

    Article  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671. doi:10.1039/b909148c

    Article  Google Scholar 

  • Holt JK, Park HG, Wang Y et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037. doi:10.1126/science.1126298

    Article  Google Scholar 

  • Hong T-K, Tripathy N, Son H-J et al (2013) A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J Mater Chem B 1:2985. doi:10.1039/c3tb20251h

    Article  Google Scholar 

  • Hornyak GL, Dutta J, Tibbals HF, Rao A (2008) Introduction to nanoscience. CRC Press, Boca Raton

    Google Scholar 

  • Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. doi:10.1016/j.watres.2005.05.051

    Article  Google Scholar 

  • Hu J, Tong Z, Hu Z et al (2012) Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J Colloid Interface Sci 377:355–361. doi:10.1016/j.jcis.2012.03.064

    Article  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.1016/j.tiv.2005.06.034

    Article  Google Scholar 

  • Hyung H, Kim J-H (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–4421. doi:10.1021/es702916h

    Article  Google Scholar 

  • IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans, vol 93, Carbon Black, Titanium Dioxide, and Talc. IARC Press, Lyon

    Google Scholar 

  • Ibald-Mulli A, Wichmann H-E, Kreyling W, Peters A (2002) Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 15:189–201. doi:10.1089/089426802320282310

    Article  Google Scholar 

  • Ichikawa T, Yoshio M, Hamasaki A et al (2011) 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J Am Chem Soc 133:2163–2169. doi:10.1021/ja106707z

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670

    Google Scholar 

  • Ismail AA, Mazyck DW (2008) Impact of heat treatment and composition of ZnO–TiO2 nanoparticles for photocatalytic oxidation of an Azo dye. Ind Eng Chem Res 47:1483–1487. doi:10.1021/ie071255p

    Article  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711. doi:10.1080/10934520600966177

    Article  Google Scholar 

  • Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. doi:10.1021/es048729l

    Article  Google Scholar 

  • Jiang Z, Lv L, Zhang W et al (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198. doi:10.1016/j.watres.2011.01.005

    Article  Google Scholar 

  • Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247. doi:10.1021/es035157g

    Article  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. doi:10.1016/j.scitotenv.2008.06.042

    Article  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi:10.1021/es048991u

    Article  Google Scholar 

  • Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418. doi:10.1126/science.1070967

    Article  Google Scholar 

  • Kato T (2010) From nanostructured liquid crystals to polymer-based electrolytes. Angew Chem Int Ed Engl 49:7847–7848. doi:10.1002/anie.201000707

    Article  Google Scholar 

  • Kelly SD, Kemner KM, Fryxell GE et al (2001) X-ray-absorption fine-structure spectroscopy study of the interactions between contaminant tetrahedral anions and self-assembled monolayers on mesoporous supports. J Phys Chem B 105:6337–6346. doi:10.1021/jp0045890

    Article  Google Scholar 

  • Kim SH, Kwak S-Y, Sohn B-H, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Memb Sci 211:157–165. doi:10.1016/S0376-7388(02)00418-0

    Article  Google Scholar 

  • Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267. doi:10.1021/jp055278y

    Article  Google Scholar 

  • Kim H, Hong H-J, Jung J et al (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043. doi:10.1016/j.jhazmat.2009.11.145

    Article  Google Scholar 

  • Kim E-S, Hwang G, Gamal El-Din M, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Memb Sci 394–395:37–48. doi:10.1016/j.memsci.2011.11.041

    Article  Google Scholar 

  • Krishna V, Pumprueg S, Lee S-H et al (2005) Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Process Saf Environ Prot 83:393–397. doi:10.1205/psep.04387

    Article  Google Scholar 

  • Lam C-W, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134. doi:10.1093/toxsci/kfg243

    Article  Google Scholar 

  • Landau MV, Vradman L, Valtchev V et al (2003) Hydrocracking of heavy vacuum gas oil with a Pt/H-beta-Al2O3 catalyst: effect of zeolite crystal size in the nanoscale range. Ind Eng Chem Res 42:2773–2782. doi:10.1021/ie020899o

    Article  Google Scholar 

  • Lee MS, Hong S-S, Mohseni M (2005) Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent. J Mol Catal A: Chem 242:135–140. doi:10.1016/j.molcata.2005.07.038

    Article  Google Scholar 

  • Lens P, Virkutyte J, Jegatheesan V et al (2013) Nanotechnology for water and wastewater treatment. IWA Publishing

    Google Scholar 

  • Leonard P, Hearty S, Brennan J et al (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13. doi:10.1016/S0141-0229(02)00232-6

    Article  Google Scholar 

  • Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111. doi:10.1016/S0045-6535(02)00201-1

    Article  Google Scholar 

  • Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122. doi:10.1080/10408430601057611

    Article  Google Scholar 

  • Liao D, Creason J, Shy C et al (1999) Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 107:521–525

    Article  Google Scholar 

  • Lien H-L, Zhang W (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047. doi:10.1061/(ASCE)0733-9372(1999)125:11(1042)

  • Lin Y, Fryxell GE, Wu H, Engelhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966. doi:10.1021/es010710k

    Article  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896. doi:10.2134/jeq2009.0423

    Article  Google Scholar 

  • Ling X, Li J, Zhu W et al (2012) Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere 87:655–660. doi:10.1016/j.chemosphere.2012.02.002

    Article  Google Scholar 

  • Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101:2562–2564. doi:10.1016/j.biortech.2009.11.074

    Article  Google Scholar 

  • Liu J, Fryxell GE, Mattigod SV et al (1998) Self-assembled monolayers on mesoporous support (SAMMS) technology for contaminant removal and stabilization. Richland, WA

    Book  Google Scholar 

  • Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18. doi:10.1016/j.chemosphere.2005.03.069

    Article  Google Scholar 

  • Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954. doi:10.1021/es800924c

    Article  Google Scholar 

  • López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314. doi:10.1016/j.cattod.2005.03.017

    Article  Google Scholar 

  • López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56. doi:10.1039/C3AY40517F

    Article  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940. doi:10.1002/jctb.1626

    Article  Google Scholar 

  • Lu Y, Fan H, Stump A et al (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226. doi:10.1038/18410

    Article  Google Scholar 

  • Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189. doi:10.1016/j.watres.2004.12.033

    Article  Google Scholar 

  • Ma Y, Qiu J, Cao Y et al (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere 44:1087–1092. doi:10.1016/S0045-6535(00)00360-X

    Article  Google Scholar 

  • Majewski PJ (2007) Removal of organic matter in water by functionalised self-assembled monolayers on silica. Sep Purif Technol 57:283–288. doi:10.1016/j.seppur.2007.04.008

    Article  Google Scholar 

  • Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12. doi:10.1093/annhyg/mel071

    Google Scholar 

  • Miller SA, Young VY, Martin CR (2001) Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc 123:12335–12342. doi:10.1021/ja011926p

    Article  Google Scholar 

  • Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157:167. doi:10.1016/S0011-9164(03)00397-7

    Article  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384. doi:10.1016/j.toxlet.2004.11.004

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. doi:10.1016/j.envint.2006.06.014

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  • Mukhopadhyay S (2011) Nanoscale multifunctional materials: science and applications. Wiley, New York

    Google Scholar 

  • Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231. doi:10.1016/j.taap.2005.01.008

    Article  Google Scholar 

  • Nahar MS, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65:1976–1982. doi:10.1016/j.chemosphere.2006.07.002

    Article  Google Scholar 

  • Nasr C, Vinodgopal K, Fisher L et al (1996) Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles. J Phys Chem 100:8436–8442. doi:10.1021/jp953556v

    Article  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  Google Scholar 

  • Nune SK, Thallapally PK, Dohnalkova A et al (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun (Camb) 46:4878–4880. doi:10.1039/c002088e

    Article  Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2009) Toxicology of nanoparticles: a historical perspective

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  Google Scholar 

  • Pastoriza-Santos I, Koktysh DS, Mamedov AA et al (2000) One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16:2731–2735. doi:10.1021/la991212g

    Article  Google Scholar 

  • Paul S, Choudhury A (2013) Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania. Appl Nanosci 4:839–847. doi:10.1007/s13204-013-0264-3

    Article  Google Scholar 

  • Pekkanen J, Timonen KL, Ruuskanen J et al (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74:24–33. doi:10.1006/enrs.1997.3750

    Article  Google Scholar 

  • Pelaez M, de la Cruz AA, Stathatos E et al (2009) Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144:19–25. doi:10.1016/j.cattod.2008.12.022

    Article  Google Scholar 

  • Peltier S, Cotte M, Gatel D et al (2003) Nanofiltration: improvements of water quality in a large distribution system. Water Sci Technol water supply 3:193–200

    Google Scholar 

  • Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng, B 177:421–427. doi:10.1016/j.mseb.2012.01.003

    Article  Google Scholar 

  • Peters R, ten Dam G, Bouwmeester H et al (2011) Identification and characterization of organic nanoparticles in food. TrAC Trends Anal Chem 30:100–112. doi:10.1016/j.trac.2010.10.004

    Article  Google Scholar 

  • Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428. doi:10.1038/nnano.2008.111

    Article  Google Scholar 

  • Popov V (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Reports 43:61–102. doi:10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparticle Res 11:1811–1815

    Article  Google Scholar 

  • Qin J-J, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56:199–203. doi:10.1016/j.seppur.2007.02.002

    Article  Google Scholar 

  • Rao KVS, Rachel A, Subrahmanyam M, Boule P (2003) Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B Environ 46:77–85. doi:10.1016/S0926-3373(03)00199-1

    Article  Google Scholar 

  • Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231. doi:10.1016/j.seppur.2006.12.006

    Article  Google Scholar 

  • Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Exam 23:234–243

    Google Scholar 

  • Sakai N, Kamikawa Y, Nishii M et al (2006) Dendritic folate rosettes as ion channels in lipid bilayers. J Am Chem Soc 128:2218–2219. doi:10.1021/ja058157k

    Article  Google Scholar 

  • Samet JM, Dominici F, Curriero FC et al (2000) Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 343:1742–1749

    Article  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342. doi:10.1007/s11051-005-7523-5

    Article  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA et al (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185. doi:10.1093/toxsci/kfj197

    Article  Google Scholar 

  • Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. Lancet 345:176–178. doi:10.1016/S0140-6736(95)90173-6

    Article  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi:10.1039/C1CS15188F

    Article  Google Scholar 

  • Shih Y, Hsu C, Su Y (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76:268–274. doi:10.1016/j.seppur.2010.10.015

    Article  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926. doi:10.1080/713853956

    Article  Google Scholar 

  • Simate GS, Iyuke SE, Ndlovu S et al (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int 39:38–49. doi:10.1016/j.envint.2011.09.006

    Article  Google Scholar 

  • Singh T, Singhal R (2013) Reuse of a waste adsorbent poly(AAc/AM/SH)-Cu superabsorbent hydrogel, for the potential phosphate ion removal from waste water: matrix effects, adsorption kinetics, and thermodynamic studies. J Appl Polym Sci 129:3126–3139. doi:10.1002/app.39018

    Article  Google Scholar 

  • Siqueira JR, Crespilho FN, Zucolotto V, Oliveira ON (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9:2676–2680. doi:10.1016/j.elecom.2007.08.009

    Article  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637. doi:10.1002/marc.200400323

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi:10.1016/j.jcis.2004.02.012

    Article  Google Scholar 

  • Song W, Justice RE, Jones CA et al (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 20:8301–8306. doi:10.1021/la049516c

    Article  Google Scholar 

  • Song W, Li G, Grassian VH, Larsen SC (2005) Development of Improved materials for environmental applications: nanocrystalline NaY zeolites. Environ Sci Technol 39:1214–1220. doi:10.1021/es049194z

    Article  Google Scholar 

  • Sousa FL, Daniel-da-Silva AL, Silva NJO, Trindade T (2015) Bionanocomposites for magnetic removal of water pollutants. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites SE—9. Springer India, pp 279–310

    Google Scholar 

  • Spadaro JA, Berger TJ, Barranco SD et al (1974) antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6:637–642. doi:10.1128/AAC.6.5.637

    Article  Google Scholar 

  • Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater Chem Phys 118:174–180. doi:10.1016/j.matchemphys.2009.07.023

    Article  Google Scholar 

  • Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters

    Google Scholar 

  • Su J, Guo H (2011) Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5:351–359. doi:10.1021/nn1014616

    Article  Google Scholar 

  • Su F, Lu C (2007) Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1543–1552. doi:10.1080/10934520701513381

    Article  Google Scholar 

  • Suffet IH (1995) Advances in taste-and-odor treatment and control

    Google Scholar 

  • Sutherland K (2008) Developments in filtration: what is nanofiltration? Filtr Sep 45:32–35. doi:10.1016/S0015-1882(08)70298-2

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi:10.1146/annurev.micro.54.1.81

    Article  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities

    Google Scholar 

  • Tiede K, Hassellöv M, Breitbarth E et al (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509. doi:10.1016/j.chroma.2008.09.008

    Article  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433

    Google Scholar 

  • Tran CL, Buchanan D, Cullen RT et al (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126

    Article  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48. doi:10.1016/S1748-0132(06)70048-2

    Article  Google Scholar 

  • UNEP (2007) GEO year book 2007—an overview of our changing environment. Nairobi, Kenya

    Google Scholar 

  • US. EPA. (2008) Nanotechnology for Site Remediation Fact Sheet. Solid waste and emergency response

    Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2002) Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 143:207–218. doi:10.1016/S0011-9164(02)00259-X

    Article  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445. doi:10.1016/S0269-7491(02)00308-1

    Article  Google Scholar 

  • Walha K, Ben Amar R, Firdaous L et al (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 207:95–106. doi:10.1016/j.desal.2006.03.583

    Article  Google Scholar 

  • Wang P, Lo IMC (2009) Synthesis of mesoporous magnetic gamma-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res 43:3727–3734. doi:10.1016/j.watres.2009.05.041

    Article  Google Scholar 

  • Wang W, Zhou M, Mao Q et al (2010) Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catal Commun 11:937–941. doi:10.1016/j.catcom.2010.04.004

    Article  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125. doi:10.1093/toxsci/kfg228

    Article  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM et al (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236. doi:10.1093/toxsci/kfj140

    Article  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. TrAC Trends Anal Chem 30:72–83. doi:10.1016/j.trac.2010.09.006

    Article  Google Scholar 

  • White BR, Stackhouse BT, Holcombe JA (2009) Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853. doi:10.1016/j.jhazmat.2008.04.105

    Article  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239. doi:10.1002/adma.200802738

    Article  Google Scholar 

  • World Health Organization (WHO) (2004) Meeting the MDG drinking water and sanitation target : a mid-term assessment of progress/WHO/UNICEF Joint Monitoring Programme

    Google Scholar 

  • Wu L, Shamsuzzoha M, Ritchie SMC (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanoparticle Res 7:469–476. doi:10.1007/s11051-005-4271-5

    Article  Google Scholar 

  • Wu J, Zheng Y, Song W et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771. doi:10.1016/j.carbpol.2013.10.093

    Article  Google Scholar 

  • Xu C, Li B, Du H et al (2008) Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J Power Sources 180:664–670. doi:10.1016/j.jpowsour.2008.02.029

    Article  Google Scholar 

  • Yan H, Gong A, He H et al (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–148. doi:10.1016/j.chemosphere.2005.03.075

    Article  Google Scholar 

  • Yan W, Herzing AA, Li X et al (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44:4288–4294. doi:10.1021/es100051q

    Article  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T et al (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119. doi:10.1021/es0705238

    Article  Google Scholar 

  • Zhang X, Du AJ, Lee P et al (2008a) TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Memb Sci 313:44–51. doi:10.1016/j.memsci.2007.12.045

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2008b) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212. doi:10.1016/j.watres.2007.11.036

    Article  Google Scholar 

  • Zhang K, Kemp KC, Chandra V (2012) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130. doi:10.1016/j.matlet.2012.05.002

    Article  Google Scholar 

  • Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32. doi:10.1023/A:1009253223055

    Article  Google Scholar 

  • Zhou M, Nemade PR, Lu X et al (2007a) New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J Am Chem Soc 129:9574–9575. doi:10.1021/ja073067w

    Article  Google Scholar 

  • Zhou Q, Xiao J, Wang W (2007b) Comparison of multiwalled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Anal Sci 23:189–192. doi:10.2116/analsci.23.189

    Article  Google Scholar 

  • Zhu J, Liu S, Palchik O et al (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399. doi:10.1021/la991507u

    Article  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596. doi:10.1016/j.jhazmat.2009.08.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

De Luca, A., Ferrer, B.B. (2017). Nanomaterials for Water Remediation: Synthesis, Application and Environmental Fate. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_2

Download citation

Publish with us

Policies and ethics