Skip to main content

Presence, Behavior and Fate of Engineered Nanomaterials in Municipal Solid Waste Landfills

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

As a result of extensive use of engineered nanomaterials (ENMs) in consumer products, significant amounts of ENMs are eventually released to the environment and find their way to wastewater treatment plants, incineration plants and landfills. Recent concerns about the potential impacts of these materials on the environment and human health, have diverted researchers’ interest to investigate the behaviour of inorganic, metallic/metal oxide ENMs in conventional activated sludge wastewater treatment and anaerobic sewage sludge digestion systems. However, related information about the presence and fate of such ENMs during waste stabilization in municipal solid waste (MSW) landfills which remains a widely used method of solid waste management, is scarce in literature. Therefore, in this paper, recent information about the detection methods and fate of the most commonly used metal oxide ENMs such as TiO2, ZnO, Ag and SiO2 in MSW landfills was revealed. The complexity of the factors influencing ENMs retention and transport mechanisms was discussed. Future research needs relating to the fate of ENMs in MSW were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljaradin M, Persson KM (2012) Environmental impact of municipal solid waste landfills in semi-arid climates—case study—Jordan. Open Waste Manag J 5:28–39

    Article  Google Scholar 

  • Al-Wabel MI, Al Yehya WS, Al-Farraj AS, El-Maghraby SE (2011) Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J Saudi Soc Agric Sci 10:65–70

    Google Scholar 

  • Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14:720–727

    Article  Google Scholar 

  • Boldrin A, Hansen SF, Baun A, Hartmann NIB, Astrup TF (2014) Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res 16:2394–2412

    Article  Google Scholar 

  • Bolyard SC, Reinhart DR, Santra S (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 47:8114–8122

    Google Scholar 

  • Bradford SA, Torkzaban S (2008) Colloid transport and retention on unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J 7:667–681

    Article  Google Scholar 

  • Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2003) Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ Sci Technol 37:2242–2250

    Article  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  Google Scholar 

  • DiSalvo RM, Gary PE, McCollum GR (2008) Evaluating the impact of nanoparticles on wastewater collection and treatment systems in Virginia. Water jam 2008. Virginia Beach, Virginia, 7–11 Sept 2008

    Google Scholar 

  • Dulger M, Sakallioglu T, Temizel I, Demirel B, Copty NK, Onay TT, Uyguner-Demirel CS, Karanfil T (2016) Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste. Chemosphere 144:1567–1572

    Article  Google Scholar 

  • Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405

    Article  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition and aggregation measurement, modeling, and simulation. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  • Ersenkal DA, Ziylan A, Ince NH, Acar HY, Demirer M, Copty NK (2011) Impact of dilution on the transport of poly (acrylic acid) supported magnetite nanoparticles in porous media. J Contam Hydrol 126:248–257

    Google Scholar 

  • Erses S, Onay TT (2003) In situ heavy metal attenuation in landfills under methanogenic conditions. J Hazard Mater 99:159–175

    Article  Google Scholar 

  • Erses AS, Onay TT, Yenigun O (2008) Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour Technol 99:5418–5426

    Article  Google Scholar 

  • Fabricius AL, Duester L, Meermann B, Ternes TA (2014) ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem 406:467–479

    Article  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  Google Scholar 

  • Han X, Geller B, Moniz K, Das P, Chippindale AK, Walker VK (2014) Monitoring the developmental impact of copper and nanoparticle exposure in Drosophila and their microbiomes. Sci Total Environ 487:822–829

    Article  Google Scholar 

  • Hennebert P, Avellan A, Yan J, Aguerre-Chariol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag 33:1870–1881

    Article  Google Scholar 

  • Holder AL, Vegerano EP, Zhou S, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci Process Impacts 15:1652–1664

    Article  Google Scholar 

  • Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323

    Article  Google Scholar 

  • Kanmani S, Gandhimathi R (2013) Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl Water Sci 3:193–205

    Article  Google Scholar 

  • Karim MR, Kuraoka M, Higuchi T, Sekine M, Imai T (2014) Assessment of heavy metal concentration from municipal solid waste open dumping sites in Bangladesh. J Hydrol Environ Res 2:41–49

    Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle release of engineered nanomaterials. J Nanopart Res 15:1692–1708

    Article  Google Scholar 

  • Khosravi K, Hoque ME, Dimock B, Hintelmann H, Metcalfe CD (2012) A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal Chim Acta 713:86–91

    Article  Google Scholar 

  • Kinsinger N, Honda R, Keene V, Walker SL (2015) Titanium dioxide nanoparticle removal in primary prefiltration stages of water treatment: role of coating, natural organic matter, source water, and solution chemistry. Environ Eng Sci 32:292–300

    Article  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  Google Scholar 

  • Larrea MT, Gómez-Pinilla I, Fariñas JC (1997) Microwave-assisted acid dissolution of sintered advanced ceramics for inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 12:1323–1332

    Article  Google Scholar 

  • Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382

    Google Scholar 

  • Lozano P, Berge ND (2012) Single-walled carbon nanotube behavior in representative mature leachate. Waste Manag 32:1699–1711

    Article  Google Scholar 

  • Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano TiO2 sol-gel type syntheses and its applications. J Mater Sci 46:3669–3686

    Article  Google Scholar 

  • Mallouk TE, Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    Article  Google Scholar 

  • Marcoux MA, Matias M, Olivier F, Keck G (2013) Review and prospect of emerging contaminants in waste—key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles. Waste Manag 33:2147–2156

    Article  Google Scholar 

  • Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403

    Article  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  Google Scholar 

  • Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128

    Article  Google Scholar 

  • Nguyen D, Visvanathan C, Jacob P, Jegatheesan V (2015) Effect of cerium (IV) oxide and zinc oxide particles on biogas production. Int Biodeterior Biodegradation 102:1–7

    Article  Google Scholar 

  • Nia Y, Millour S, Noël L, Krystek P, de Jong W, Guerin T (2015) Determination of Ti from TiO2 nanoparticles in biological materials by different ICP-MS instruments: method validation and applications. J Nanomed Nanotechnol 6:1–8

    Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Matcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alternation in the environment. Environ Toxicol Chem 31:50–59

    Article  Google Scholar 

  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11

    Article  Google Scholar 

  • Onay TT, Pohland FG (1998) In situ nitrogen management in controlled landfills. Water Res 32:1383–1392

    Article  Google Scholar 

  • Packer AP, Lariviere D, Li CS, Chen M, Fawcett A, Nielsen K, Mattson K, Chatt A, Scriver C, Erhardt LS (2007) Validation of an inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cerium, strontium, and titanium in ceramic materials used in radiological dispersal devices (RDDs). Anal Chim Acta 588:166–172

    Article  Google Scholar 

  • Phenrat T, Lowry GV (2009) Physicochemistry of polyelectrolyte coatings that increase stability, mobility and contaminant specificity of reactive nanoparticles used for groundwater remediation. In: Savage N, Diallo M, Duncan J, Street A, Sustich R, Andrew W (eds) Nanotechnology applications for clean water. Norwich, NY, USA, pp 249–267

    Chapter  Google Scholar 

  • Phenrat T, Kim H-J, Fagerlund F, Illanasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ Sci Technol 43:5079–5085

    Article  Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99

    Article  Google Scholar 

  • Reinhart D, Berge N, Santra S, Bolyard SC (2010) Emerging contaminants: nanomaterial fate in landfills. Waste Manag 30:2020–2021

    Article  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatement: review and opportunity. J Hazard Mater 150:468–493

    Article  Google Scholar 

  • Sakallioglu T, Bakirdoven M, Temizel I, Demirel B, Copty NK, Onay TT, Demirel CSU, Karanfil T (2016) Leaching of nano-ZnO in municipal solid waste. Under Rev J Hazard Mater

    Google Scholar 

  • Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  Google Scholar 

  • San I, Onay TT (2001) Impact of various leachate recirculation regimes on municipal solid waste degradation. J Hazard Mater 87:259–271

    Article  Google Scholar 

  • Schmidt J, Vogelsberger W (2009) Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J Solution Chem 38:1267–1282

    Article  Google Scholar 

  • Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid associated contaminant transport in saturated porous media. Adv Colloid Interface Sci 119:71–96

    Article  Google Scholar 

  • Sima L, Amador J, da Silva AK, Miller SM, Morse AN, Pellegring ML, Rock J, Wells MJM (2014) Emerging pollutants—part I: occurrence, fate and transport. Water Environ Res 86:1994–2035

    Article  Google Scholar 

  • Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939–1956

    Article  Google Scholar 

  • Steenhuis TS, Dathe A, Zevi Y, Smith JL, Gao B, Shaw SB, DeAlwis D, Amaro-Garcia S, Fehrman R, Cakmak ME, Toevs IC, Liu BM, Beyer SM, Crist JT, Hay AG, Richards BK, DiCarlo D, McCarthy JF (2006) Biocolloid retention in partially saturated soils. Biologia 61:S229–S233

    Article  Google Scholar 

  • Strobel C, Oehring H, Herrmann R, Förster M, Reller A, Hilger I (2015) Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis. J Nanopart Res 17:206–219

    Article  Google Scholar 

  • Szymczycha-Madeja A, Mulak W (2009) Comparison of various digestion procedures in chemical analysis of spent hydrodesulphurization catalyst. J Hazard Mater 164:776–780

    Article  Google Scholar 

  • Torkzaban S, Kim Y, Mulvihill M, Wan J, Tokunaga TK (2010) Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. J Contam Hydrol 118:208–217

    Article  Google Scholar 

  • van Bussel W, Kerkhof F, van Kessel T, Lamers H, Nous D, Verdonk H, Verhoeven B, Boer N, Toonen H (2010) Accurate determination of titanium as titanium dioxide for limited sample size digestibility studies of feed and food matrices by inductively coupled plasma optical emission spectrometry with real-time simultaneous internal standardization. At Spectrosc 31:81–88

    Google Scholar 

  • Vogelsberger W, Schmidt J, Roelofs F (2008) Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behavior. Colloids Surf A 324:51–57

    Article  Google Scholar 

  • Yang GCC, Tu H-C, Hung C-H (2007) Stability of nano-iron slurries and their transport in the subsurface. Sep Purif Technol 58:166–172

    Article  Google Scholar 

  • Yang Y, Xu M, Wall J, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32:816–825

    Article  Google Scholar 

  • Yang Y, Zhang C, Hu Z (2013a) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15:39–48

    Article  Google Scholar 

  • Yang Y, Gajaraj S, Wall JD, Hu Z (2013b) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47:3422–3430

    Article  Google Scholar 

  • Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Scientific and Technological Research Council of Turkey (TÜBİTAK) for their support for this work through project 112Y322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Demirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Uyguner-Demirel, C.S., Demirel, B., Copty, N.K., Onay, T.T. (2017). Presence, Behavior and Fate of Engineered Nanomaterials in Municipal Solid Waste Landfills. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_12

Download citation

Publish with us

Policies and ethics