Skip to main content

Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML

  • Chapter
  • First Online:
Immunotherapy

Abstract

Acute myeloid leukemia (AML) is the most common leukemia among adults and is associated with a poor prognosis, especially in patients with adverse prognostic factors, older age, or relapsed disease. The last decade has seen a surge in successful immune-based therapies in various solid tumors; however, the role of immune therapies in AML remains poorly defined. This chapter describes the rationale, clinical data, and toxicity profiles of immune-based therapeutic modalities in AML including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, chimeric antigen receptor (CAR)-T cells, and checkpoint blockade via blockade of PD1/PDL1 or CTLA4. Monoclonal antibodies commonly used in AML therapy target highly expressed “leukemia” surface antigens and include (1) naked antibodies against common myeloid markers such as anti-CD33 (e.g., lintuzumab), (2) antibody-drug conjugates linked to either, (a) a highly potent toxin such as calicheamicin, pyrrolobenzodiazepine, maytansine, or others in various anti-CD33 (gemtuzumab ozogamicin, SGN 33A), anti-123 (SL-401), and anti-CD56 (lorvotuzumab mertansine) formulations, or (b) radioactive particles, such as 131I, 213Bi, or 225Ac-labeled anti-CD33 or CD45 antibodies. Novel monoclonal antibodies that recruit and promote proximity-induced cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as anti CD33/CD3, e.g., AMG 330) or block immune checkpoint pathways such as CTLA4 (e.g., ipilimumab) or PD1/PD-L1 (e.g., nivolumab) unleashing the patients T cells to fight leukemic cells are being evaluated in clinical trials in patients with AML. The numerous ongoing clinical trials with immunotherapies in AML will improve our understanding of the biology of AML and allow us to determine the best approaches to immunotherapy in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yates JW, Wallace Jr HJ, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57(4):485–8.

    CAS  PubMed  Google Scholar 

  2. Kantarjian H, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106(5):1090–8. doi:10.1002/cncr.21723.

    Article  PubMed  Google Scholar 

  3. Kantarjian HM. Therapy for elderly patients with acute myeloid leukemia: a problem in search of solutions. Cancer. 2007;109(6):1007–10. doi:10.1002/cncr.22502.

    Article  CAS  PubMed  Google Scholar 

  4. Giles F, et al. Outcome of patients with acute myelogenous leukemia after second salvage therapy. Cancer. 2005;104(3):547–54. doi:10.1002/cncr.21187.

    Article  PubMed  Google Scholar 

  5. Ravandi F, et al. (2010) Characteristics and outcome of patients with acute myeloid leukemia refractory to 1 cycle of high-dose cytarabine-based induction chemotherapy. Blood 116(26):5818–23; quiz 6153. doi:10.1182/blood-2010-07-296392

  6. Horowitz MM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    CAS  PubMed  Google Scholar 

  7. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. doi:10.1038/nbt1137.

    Article  CAS  PubMed  Google Scholar 

  8. Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012;22(1):3–13. doi:10.1016/j.semcancer.2011.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saito Y, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2(17):17ra9. doi:10.1126/scitranslmed.3000349.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Freeman SD, Kelm S, Barber EK, Crocker PR. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995;85(8):2005–12.

    CAS  PubMed  Google Scholar 

  11. Guo W, et al. Numbers and cytotoxicities of CD3 + CD56+ T lymphocytes in peripheral blood of patients with acute myeloid leukemia and acute lymphocytic leukemia. Cancer Biol Ther. 2013;14(10):916–21. doi:10.4161/cbt.25938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munoz L, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica. 2001;86(12):1261–9.

    CAS  PubMed  Google Scholar 

  13. Hauswirth AW, et al. Expression of the target receptor CD33 in CD34+/CD38−/CD123+ AML stem cells. Eur J Clin Invest. 2007;37(1):73–82. doi:10.1111/j.1365-2362.2007.01746.x.

    Article  CAS  PubMed  Google Scholar 

  14. Raza A, et al. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: a phase 1 trial. Leuk Lymphoma. 2009;50(8):1336–44. doi:10.1080/10428190903050013.

    Article  CAS  PubMed  Google Scholar 

  15. Feldman EJ, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23(18):4110–6. doi:10.1200/jco.2005.09.133.

    Article  CAS  PubMed  Google Scholar 

  16. Sekeres MA, et al. Randomized phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013;98(1):119–28. doi:10.3324/haematol.2012.066613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vasu SHS, Cheney C, Gopalakrishnan B, Mani R, Lozanski G, Mo X. Decitabine upregulates surface expression of ligands for NK activating receptors in AML blasts resulting in increased efficacy of the novel CD33-specifci Fc-engineered antibody BI 836858 against primary AML blasts – a rational for combination therapy. Blood. 2016;127(23):2879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lapusan S, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs. 2012;30(3):1121–31. doi:10.1007/s10637-011-9670-0.

    Article  CAS  PubMed  Google Scholar 

  19. Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.

    CAS  PubMed  Google Scholar 

  20. Sievers EL, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54.

    Article  CAS  PubMed  Google Scholar 

  21. Larson RA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104(7):1442–52. doi:10.1002/cncr.21326.

    Article  CAS  PubMed  Google Scholar 

  22. Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi:10.1182/blood-2013-01-466706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKoy JM, et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31(5):599–604. doi:10.1016/j.leukres.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  24. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood. 2002;99(7):2310–4.

    Article  CAS  PubMed  Google Scholar 

  25. Burnett AK, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77. doi:10.1200/jco.2010.31.4310.

    Article  CAS  PubMed  Google Scholar 

  26. Burnett AK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31. doi:10.1200/jco.2012.42.2964.

    Article  CAS  PubMed  Google Scholar 

  27. Castaigne S, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet (London, England). 2012;379(9825):1508–16. doi:10.1016/s0140-6736(12)60485-1.

    Article  CAS  Google Scholar 

  28. Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96. doi:10.1016/s1470-2045(14)70281-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ravandi F, et al. Gemtuzumab ozogamicin: time to resurrect? J Clin Oncol. 2012;30(32):3921–3. doi:10.1200/jco.2012.43.0132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowe JM, Lowenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838–41. doi:10.1182/blood-2013-03-490482.

    Article  CAS  PubMed  Google Scholar 

  31. Kung Sutherland MS, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63. doi:10.1182/blood-2013-03-491506.

    Article  PubMed  Google Scholar 

  32. Sutherland MK, et al. 5-azacytidine enhances the anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. mAbs. 2010;2(4):440–8.

    Article  PubMed  Google Scholar 

  33. Fathi A Erba HP, Lancet JE, Stein B, Walter R, DeAngelo D. (2015) SGN-CD33A plus hypomethylating agents: a novel, well-tolerated regimen with high remission rate in frontline unfit AML. Blood 126(Abst. 454).

    Google Scholar 

  34. Watkins K WR, Fishkin N, Audette Ch, Kovtun Y, Romanelli A (2015) IMGN779, a CD33-targeted antibody-drug conjugate (ADC) with a novel DNA-alkylating effector molecule, induces DNA damage, cell cycle arrest, and apoptosis in AML cells. ASH Abstract No 1366.

    Google Scholar 

  35. Whiteman KR, et al. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models. mAbs. 2014b;6(2):556–66. doi:10.4161/mabs.27756.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Whiteman KR NP, Walker R, Watkins K, Kovtun Y, Harvey L, Wilhelm A, et al. (2014a) The antibody-drug conjugate (ADC) IMGN779 is highly active in vitro and in vivo against acute myeloid leukemia (AML) with FLT3-ITD mutations. ASH Abstract No 2321.

    Google Scholar 

  37. Bagley CJ, Woodcock JM, Stomski FC, Lopez AF. The structural and functional basis of cytokine receptor activation: lessons from the common beta subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors. Blood. 1997;89(5):1471–82.

    CAS  PubMed  Google Scholar 

  38. Testa U, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100(8):2980–8. doi:10.1182/blood-2002-03-0852.

    Article  CAS  PubMed  Google Scholar 

  39. He SZ, et al. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma. 2015;56(5):1406–15. doi:10.3109/10428194.2014.956316.

    Article  CAS  PubMed  Google Scholar 

  40. Smith BD RJ, Walter RB, et al. (2014) 120 First-in Man, Phase 1 Study of CSL362 (Anti-IL3Rα/Anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse. Blood. Abstract 616

    Google Scholar 

  41. Frankel AE, Ramage J, Kiser M, Alexander R, Kucera G, Miller MS. Characterization of diphtheria fusion proteins targeted to the human interleukin-3 receptor. Protein Eng. 2000;13(8):575–81.

    Article  CAS  PubMed  Google Scholar 

  42. Frankel AE, et al. Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood. 2014;124(3):385–92. doi:10.1182/blood-2014-04-566737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Konopleva M HD, Rizzieri D, Cirrito T, Liu JS, Kornblau S, Grable M, Hwang IL, Borthakur G, et al. (2010) Phase I trial results for SL-401, a novel cancer stem cell (CSC) targeting agent, demonstrate clinical efficacy at tolerable doses in patients with heavily pre-treated AML, poor risk elderly AML, and high risk MDS. 53th ASH Annual Meeting and Exposition Abstract No 3298.

    Google Scholar 

  44. Pemmaraju N, Lane A, Sweet K, Stein A, Vasu S, Konopleva M, et al. Results from ongoing phase 2 registration study of SL-401 in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). EHA 2016, Abstract S812.

    Google Scholar 

  45. Sweet K PN, Lane A, Stein A, Vasu S, Blum W, Rizzieri DA, et al. (2015) Lead-in stage results of a pivotal trial of SL-401, an interleukin-3 receptor (IL-3R) targeting biologic, in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) or acute myeloid leukemia (AML) ASH 2015 Abstract No 3795

    Google Scholar 

  46. Zeromski J, Nyczak E, Dyszkiewicz W. Significance of cell adhesion molecules, CD56/NCAM in particular, in human tumor growth and spreading. Folia Histochem Cytobiol. 2001;39(Suppl 2):36–7.

    PubMed  Google Scholar 

  47. Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science (New York, NY). 1987;236(4803):799–806.

    Article  CAS  Google Scholar 

  48. Patel K, et al. Neural cell adhesion molecule (NCAM) is the antigen recognized by monoclonal antibodies of similar specificity in small-cell lung carcinoma and neuroblastoma. Int J Cancer. 1989;44(4):573–8.

    Article  CAS  PubMed  Google Scholar 

  49. Erickson HK, Lambert JM. ADME of antibody-maytansinoid conjugates. AAPS J. 2012;14(4):799–805. doi:10.1208/s12248-012-9386-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shah MH, et al. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Invest New Drugs. 2016;34(3):290–9. doi:10.1007/s10637-016-0336-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clift RA, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood. 1990;76(9):1867–71.

    CAS  PubMed  Google Scholar 

  52. Scheinberg DA, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9(3):478–90.

    Article  CAS  PubMed  Google Scholar 

  53. Burke JM, et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32(6):549–56. doi:10.1038/sj.bmt.1704201.

    Article  CAS  PubMed  Google Scholar 

  54. Matthews DC, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94(4):1237–47.

    CAS  PubMed  Google Scholar 

  55. Pagel JM, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107(5):2184–91. doi:10.1182/blood-2005-06-2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenblat TL, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303–11. doi:10.1158/1078-0432.ccr-10-0382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jurcic JG RT, McDevitt MR, et al. (2011) Phase I trial of the targeted alpha-particle nano-generator Actinium-225(225Ac)-Lintuzumab (anti-CD33; HuM195) in acute myeloid leukemia (AML). ASH Abstract No 768

    Google Scholar 

  58. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4. doi:10.1158/0008-5472.can-09-0547.

    Article  CAS  PubMed  Google Scholar 

  59. Topp MS, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. doi:10.1200/jco.2010.32.7270.

    Article  CAS  PubMed  Google Scholar 

  60. Krupka C, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123(3):356–65. doi:10.1182/blood-2013-08-523548.

    Article  CAS  PubMed  Google Scholar 

  61. Laszlo GS, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123(4):554–61. doi:10.1182/blood-2013-09-527044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rader C. DARTs take aim at BiTEs. Blood. 2011;117(17):4403–4. doi:10.1182/blood-2011-02-337691.

    Article  CAS  PubMed  Google Scholar 

  63. Chichili GR, et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med. 2015;7(289):289ra82. doi:10.1126/scitranslmed.aaa5693.

    Article  PubMed  Google Scholar 

  64. Knuth A, Danowski B, Oettgen HF, Old LJ. T-cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T-cell cultures. Proc Natl Acad Sci U S A. 1984;81(11):3511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, NY). 2015;348(6230):62–8. doi:10.1126/science.aaa4967.

    Article  CAS  Google Scholar 

  66. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pegram HJ, Park JH, Brentjens RJ. CD28z CARs and armored CARs. Cancer journal (Sudbury, MA). 2014;20(2):127–33. doi:10.1097/ppo.0000000000000034.

    Article  CAS  Google Scholar 

  68. Grupp SA, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. doi:10.1056/NEJMoa1215134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ritchie DS, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9. doi:10.1038/mt.2013.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pizzitola I, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28(8):1596–605. doi:10.1038/leu.2014.62.

    Article  CAS  PubMed  Google Scholar 

  71. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. Immunity. 2013;39(1):61–73.

    Google Scholar 

  73. Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, Gogas HJ. Next generation of immunotherapy for melanoma. J Clin Oncol. 2008;26(20):3445–55.

    Google Scholar 

  74. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  75. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.

    Article  CAS  PubMed  Google Scholar 

  76. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  77. Velu V, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458(7235):206–10. doi:10.1038/nature07662.

    Article  CAS  PubMed  Google Scholar 

  78. Dong H, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi:10.1038/nm730.

    CAS  PubMed  Google Scholar 

  79. Barber DL, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7. doi:10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  80. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65:185–202. doi:10.1146/Annurev-Med-092012-112807.

    Article  CAS  PubMed  Google Scholar 

  82. Robert C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. doi:10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  83. Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44. doi:10.1158/1078-0432.ccr-10-2660.

    Article  CAS  PubMed  Google Scholar 

  84. Costello RT, Mallet F, Sainty D, Maraninchi D, Gastaut JA, Olive D. Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Eur J Immunol. 1998;28(1):90–103. doi:10.1002/(SICI)1521-4141(199801)28:01<90::AID-IMMU90>3.0.CO;2-5.

    Google Scholar 

  85. Graf M, et al. High expression of costimulatory molecules correlates with low relapse-free survival probability in acute myeloid leukemia (AML). Ann Hematol. 2005;84(5):287–97. doi:10.1007/s00277-004-0978-0.

    Article  CAS  PubMed  Google Scholar 

  86. Re F, et al. Expression of CD86 in acute myelogenous leukemia is a marker of dendritic/monocytic lineage. Exp Hematol. 2002;30(2):126–34.

    Article  CAS  PubMed  Google Scholar 

  87. Vollmer M, et al. Expression of human leucocyte antigens and co-stimulatory molecules on blasts of patients with acute myeloid leukaemia. Br J Haematol. 2003;120(6):1000–8.

    Article  CAS  PubMed  Google Scholar 

  88. Whiteway A, Corbett T, Anderson R, Macdonald I, Prentice HG. Expression of co-stimulatory molecules on acute myeloid leukaemia blasts may effect duration of first remission. Br J Haematol. 2003;120(3):442–51.

    Article  CAS  PubMed  Google Scholar 

  89. Fevery S, et al. CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease. Leukemia. 2007;21(7):1451–9. doi:10.1038/sj.leu.2404720.

    Article  CAS  PubMed  Google Scholar 

  90. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–36. doi:10.1182/blood-2008-09-179697.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood. 2009;114(8):1545–52. doi:10.1182/blood-2009-03-206672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou Q, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501–10. doi:10.1182/blood-2010-10-310425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koestner W, et al. PD-L1 blockade effectively restores strong graft-versus-leukemia effects without graft-versus-host disease after delayed adoptive transfer of T-cell receptor gene-engineered allogeneic CD8+ T cells. Blood. 2011;117(3):1030–41. doi:10.1182/blood-2010-04-283119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou Q, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116(14):2484–93. doi:10.1182/blood-2010-03-275446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Daver N, Basu S, Garcia-Manero G, Cortes J, Ravandi F, Ning J, Sharma P, et al. Defining the Immune Checkpoint Landscape in Patients with Acute Myeloid Leukemia. Blood 2016; 128:2900.

    Google Scholar 

  96. Berger R, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi:10.1158/1078-0432.CCR-07-4079.

    Article  CAS  PubMed  Google Scholar 

  97. Yang H, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2013; doi:10.1038/leu.2013.355.

    Google Scholar 

  98. Daver N, Basu S, Garcia-Manero G, Cortes J, Ravandi F, Sharma P, et al. Phase IB/II Study of Nivolumab in Combination with 5-Azacitidine in Patients with Relapsed Acute Myeloid Leukemia. Blood 2016;128:763

    Google Scholar 

  99. Davids MS KH, Costello CL, McSweeney PA, Liguori R, Lukez A, et al. (2015) A multicenter phase I/Ib study of ipilimumab for relapsed hematologic malignancies after allogeneic hematopoietic stem cell transplantation. ASH Abstract No 723

    Google Scholar 

  100. Richter G, Burdach S. ICOS: a new costimulatory ligand/receptor pair and its role in T-cell activion. Onkologie. 2004;27(1):91–5. doi:10.1159/000075612.

    CAS  PubMed  Google Scholar 

  101. Richter G, et al. Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34(+) progenitor cells during differentiation into antigen presenting cells. J Biol Chem. 2001;276(49):45686–93. doi:10.1074/jbc.M108509200.

    Article  CAS  PubMed  Google Scholar 

  102. Wang C, Lin GH, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev. 2009;229(1):192–215. doi:10.1111/j.1600-065X.2009.00765.x.

    Article  CAS  PubMed  Google Scholar 

  103. Imura A, et al. OX40 expressed on fresh leukemic cells from adult T-cell leukemia patients mediates cell adhesion to vascular endothelial cells: implication for the possible involvement of OX40 in leukemic cell infiltration. Blood. 1997;89(8):2951–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported in part by the MD Anderson Cancer Centre Support Grant (CCSG) CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naval Daver .

Editor information

Editors and Affiliations

Additional information

Author Contributions

 LM, HK, GGM, FR, PS, and ND collected and reviewed the data and wrote the paper. All authors participated in the discussion, have reviewed, and approved the current version of the manuscript.

Naval Daver is responsible for the overall content as guarantor.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masarova, L., Kantarjian, H., Garcia-Mannero, G., Ravandi, F., Sharma, P., Daver, N. (2017). Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-319-53156-4_4

Download citation

Publish with us

Policies and ethics