Skip to main content

A Framework for Analyzing Uncertainty in Data Using Computational Intelligence Techniques

  • Chapter
  • First Online:
Intelligent Decision Support Systems for Sustainable Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 705))

Abstract

In this study, use of soft computing techniques for analyzing medical data is presented. A medical dataset usually contains objects/records of patients that include a set of symptoms that a patient experiences. Analysis of such medical data could reveal new insights that would definitely help in efficient diagnosis and also in drug discovery. A novel fuzzy-rough based classification approach is described and its performance is evaluated using a medical dataset having multiclass values for response variable. Novel approaches for data preprocessing using fuzzy-rough concepts are introduced for attaining complete and consistent data. Thus, automated medical diagnosis can be done efficiently by using computational intelligence (CI) techniques for the benefit of mankind to live a healthy long life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Selvachandran, A vague soft set theoretic approach to multi attribute decision making problems. Appl. Math. Sci. 8(134), 6937–6949 (2014)

    Article  Google Scholar 

  2. J. Fulcher, Advances in Applied Artificial Intelligence. Computational Intelligence and its Applications Series (2006)

    Google Scholar 

  3. W. Sibanda, P. Pretorius, Novel application of multi-layer perceptrons (MLP) neural networks to model HIV in South Africa using seroprevalence data from antenatal clinics. Int. J. Comput. Appl. 35(5) (2011)

    Google Scholar 

  4. A.J. Umbarkar, M.S. Joshi, P.D. Sheth, Dual population genetic algorithm for solving constrained optimization problems. Int. J. Intell. Syst. Appl. 2, 34–40 (2015)

    Google Scholar 

  5. M. Kumar, N. Yadav, Fuzzy rough sets and its application in data mining field. Adv. Comput. Sci. Inf. Technol. 2(3), 237–240 (2015)

    Google Scholar 

  6. A. Umut, S. Ayberk, Failure mode and effects analysis under uncertainty: a literature review and tutorial. Intell. Decis. Making Qual. Manage. 97, 265–325 (2016)

    Article  Google Scholar 

  7. C.M.D. Cornelis, E. Cock, E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect Knowledge. Expert Syst. 20(5), 260–270 (2003)

    Google Scholar 

  8. J. David Hunter, Uncertainty in the Era of Precision Medicine. The New England Journal of Medicine. pp. 711–713, (2016)

    Google Scholar 

  9. J. Kacprzyk, S. Zadrozny, G. De Tre, Fuzziness in database management systems. Fuzzy Sets Syst. 281, 300–307 (2015)

    Article  Google Scholar 

  10. B. Zhang, A new measure of similarity between vague sets, in International Conference on Oriental Thinking and Fuzzy Logic, vol. 443 (2016), pp. 601–610

    Google Scholar 

  11. G. De Tre, S. Zadrożny, Soft Computing in Database and Information Management. Springer Handbook of Computational Intelligence (2015)

    Google Scholar 

  12. G.J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley, Hoboken, 2006), p. 499

    Google Scholar 

  13. L. Zadeh, Fuzzy Sets, Information and Control (1965), pp. 338–353

    Google Scholar 

  14. Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11(5) (1982)

    Google Scholar 

  15. I. Duntsch, G. Gediga, Rough set data analysis. Encycl. Comput. Sci. Technol. 43(28), 281–301 (2000)

    MATH  Google Scholar 

  16. E.H. Shortliffe, J.J. Cimino, Biomedical informatics. Comput. Appl. Health Care and Biomed. (2014)

    Google Scholar 

  17. A. Skowron, S.K. Pal, Rough sets. Pattern recognition and data mining. Pattern Recogn. Lett 24(6), 829–933 (2003)

    Article  Google Scholar 

  18. S. Udhayakumar, H. Hannah, Inbarani: a novel neighborhood rough set based classification approach for medical diagnosis. Proc. Comput. Sci. 47, 351–359 (2015)

    Article  Google Scholar 

  19. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data (Dordrecht Kluwer Academic, 1991)

    Google Scholar 

  20. A. Skowron, Z. Pawlak, J. Komorowski, L. Polkowski, A rough set perspective on data and knowledge, in Handbook of Data Mining and Knowledge Discovery (2002), pp. 134–149

    Google Scholar 

  21. D. Jianhua, Rough set approach to incomplete numerical data. Inf. Sci. 241, 43–57 (2013)

    Google Scholar 

  22. D.S. Yeung, D. Chen, E.C.C. Tsang, J.W.T. Lee, W. Xizhao, On the generalization of fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13(3), 43–361 (2005)

    Article  Google Scholar 

  23. I. Masahiro, W.-Z. Wu, C. Cornelis, Fuzzy-Rough Hybridization. Springer Handbook of Computational Intelligence (2015), pp. 425–451

    Google Scholar 

  24. W.Z. Wu, J.S. Mi, W.X. Zhang, Generalized fuzzy rough sets. Inf. Sci. 151, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Boixader, J. Jacas, J. Recasens, Upper and lower approximations of fuzzy sets. Int. J. Gen. Sys. 29(4), 555–568 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Saleh, A. Valls, A. Moreno, P. Romero-Aroca, S. dela Riva-Fernandez, R. Sagarra Alamo, Diabetic retinopathy risk estimation using fuzzy rules on electronic health record data. Model. Decis. Artif. Intell. 9880, 263–274 (2016)

    Google Scholar 

  27. S. Chimphlee, N. Salim, M.S.B. Ngadiman, W. Chimphlee, S. Srinoy, Independent component analysis and rough fuzzy based approach to web usage mining, in Proceedings of the Artificial Intelligence and Applications (2006), pp. 422–427

    Google Scholar 

  28. L. D’eer, N. Verbiest, C. Cornelis, L. Godo, A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis. Fuzzy Sets Syst. (2014)

    Google Scholar 

  29. S.P. Tiwari, S. Sharan, V.K. Yadav, Fuzzy closure spaces vs. fuzzy rough sets. Fuzzy Inf. Eng. 6(1), 93–100 (2014)

    Google Scholar 

  30. J. Zhan, K. Zhu, A novel soft rough fuzzy set: z-soft rough fuzzy ideals of hemirings and corresponding decision making. Soft Comput. 1–14 (2016)

    Google Scholar 

  31. S. Rajasekaran, G.A. Vijayalakshmi Pai: Neural networks, fuzzy logic and genetic algorithms synthesis and applications. PHI Learn. (2011)

    Google Scholar 

  32. A. Rajendra, S. Priti Srinivas, Artificial neural network. Intell. Tech. Data Sci. 125–155 (2016)

    Google Scholar 

  33. T. Santhanam, E.P. Ephzibah, Heart disease prediction using hybrid genetic fuzzy model. Indian J. Sci. Technol. 8(9), 797–803 (2015)

    Article  Google Scholar 

  34. UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml

  35. A.P. Markopoulos, W. Habrat, N.I. Galanis, Modelling and optimization of machining with the use of statistical methods and soft computing. Des. Exp. Prod. Eng. 39–88 (2016)

    Google Scholar 

  36. A. Hudaib, R. Dannoun, O. Harfoushi, R. Obiedat, H. Faris, Hybrid data mining models for predicting customer churn. Int. J. Commun. Network Syst. Sci. 8, 91–96 (2015)

    Google Scholar 

  37. Md. Mijanur Rahman, T. Akter Setu, An implementation for combining neural networks and genetic algorithms. Int. J. Comput. Sci. Technol. 6(3) (2015)

    Google Scholar 

  38. S.-K. Oh, W. Pedrycz, Genetically optimized hybrid fuzzy neural networks: analysis and design of rule-based multi-layer perceptron architectures, in Engineering Evolutionary Intelligent Systems (Springer, 2008)

    Google Scholar 

  39. K.-L. Du, M.N.S. Swamy, Genetic Algorithms. Search and Optimization by Metaheuristics (2016), pp. 37–69

    Google Scholar 

  40. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, 1975)

    Google Scholar 

  41. D.E. Goldberg, K. Sastry, A practical schema theorem for genetic algorithm design and tuning, in Proceedings of the Genetic and Evolutionary Computation Conference (2001), pp. 328–335

    Google Scholar 

  42. D.H. Kraft, E. Colvin, G. Bordogna, Fuzzy information retrieval systems: a historical perspective, in Fifty Years of Fuzzy Logic and its Applications, vol. 326, pp. 267–296 (2015)

    Google Scholar 

  43. D. Dubois, H. Prade, Putting Rough Sets and Fuzzy Sets Together (1992), pp. 203–232

    Google Scholar 

  44. T. Beaubouef, F. Petry, Information systems uncertainty design and implementation combining: rough, fuzzy and intuitionistic approaches. Flexible approaches in data. Inf. Knowl. Manage. 497, 143–164 (2014)

    Google Scholar 

  45. M. Cai, Q. Li, G. Lang, Shadowed sets of dynamic fuzzy sets. Granular Comput. 1–10 (2016)

    Google Scholar 

  46. Kaklauskas Arturas, Intelligent decision support systems. Biometric Intell. Decis. Making Support 81, 31–85 (2015)

    Google Scholar 

  47. G.M. Bergman, Ordered sets, induction, and the axiom of choice, in An Invitation to General Algebra and Universal Constructions (2015), pp. 119–171

    Google Scholar 

  48. M.H.A. Elhebir, Machine Learning Methods for Mining Web Access Patterns (Sudan University for Science & Technology, 2016)

    Google Scholar 

  49. A. Abraham, C. Grosan, V. Ramos, Swarm Intelligence and Data Mining. Studies in Computational Intelligence (Springer, 2006), p. 270

    Google Scholar 

  50. B. Yue, W. Yao, A. Abraham, H. Liu, A new rough set reduct algorithm based on particle swarm optimization, in International Work-Conference on the Interplay Between Natural and Artificial Computation (2007), pp. 397–406

    Google Scholar 

  51. D.H. Kim, A. Abraham, J.H. Cho, Hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177(18), 3918–3937 (2007)

    Google Scholar 

  52. M.F. Ganji, M.S. Abadeh, Parallel Fuzzy Rule Learning Using an ACO-Based Algorithm for Medical Data Mining (IEEE, 2010)

    Google Scholar 

  53. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6, 321–332 (2002)

    Article  MATH  Google Scholar 

  54. K.M. Salama, A.M. Abdelbar, Learning neural network structures with ant colony algorithms. Swarm Intell. 9, 229–265 (2015)

    Google Scholar 

  55. P. Mrutyunjaya, A. Ajith, Hybrid evolutionary algorithms for classification data mining. Neural Comput. Appl. 26, 507–523 (2015)

    Article  Google Scholar 

  56. A. Thannob, S. Siriporn, L. Chidchanok, Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl. Intell. 37, 357–376 (2012)

    Article  Google Scholar 

  57. M. Chen, S.A. Ludwig, A fuzzy discrete particle swarm optimization classifier for rule classification. Int. J. Hybrid Intell. Syst. 11(3) (2014)

    Google Scholar 

  58. H. Ishibuchi, T. Nakashima, T. Murata, Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst. Man Cybern. 29(5), 601–618 (1999)

    Article  Google Scholar 

  59. L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6) (1992)

    Google Scholar 

  60. Medical Misdiagnosis in America 2008, http://www.premerus.com/news/Misdiagnosis_in_America.pdf

  61. O.W. Samuel, G.M. Asogbon, A.K. Sangaiah, P. Fang, G. Li, An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)

    Article  Google Scholar 

  62. A.K. Sangaiah, A.K. Thangavelu, X.Z. Gao, N. Anbazhagan, M.S. Durai, An ANFIS approach for evaluation of team-level service climate in GSD projects using Taguchi-genetic learning algorithm. Appl. Soft Comput. 30, 628–635 (2015)

    Article  Google Scholar 

  63. A.K. Sangaiah, A.K. Thangavelu. An adaptive neuro-fuzzy approach to evaluation of team-level service climate in GSD projects. Neural Comput. Appl. 23(8) ( 2013). doi:10.1007/s00521-013-1521-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lavanya Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sujatha, M., Lavanya Devi, G., Naresh, N. (2017). A Framework for Analyzing Uncertainty in Data Using Computational Intelligence Techniques. In: Sangaiah, A., Abraham, A., Siarry, P., Sheng, M. (eds) Intelligent Decision Support Systems for Sustainable Computing. Studies in Computational Intelligence, vol 705. Springer, Cham. https://doi.org/10.1007/978-3-319-53153-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53153-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53152-6

  • Online ISBN: 978-3-319-53153-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics