Skip to main content

Capacity Limits Over Fading Environment with Imperfect Channel State Information for Cognitive Radio Networks

  • Chapter
  • First Online:
Spectrum Sharing in Cognitive Radio Networks
  • 583 Accesses

Abstract

The access strategy to provide efficient spectrum allocation to the cognitive user is an important issue in cognitive radio communication network research. The channel state information (CSI) between cognitive user (CU) transmitter and the primary user (PU) receiver is employed to compute the maximum CU transmit power allowable to limit the interference. Channel capacity is the best performance metric to analyze any cognitive radio network model, and several capacity notions are expressed for different fading channels, such as ergodic capacity for the fast-fading channel and outage capacity for the slow-fading channel. Various researchers have analyzed the capacity limits of the CU link over different fading channels with perfect and imperfect CSI. In this chapter, we explore an optimal power allocation scheme for spectrum sharing with imperfect channel state information between the CU and PU over a Rayleigh fading environment. We analyze the ergodic capacity of the CU link under the combination of peak transmit power and peak/average interference power constraints with and without primary user interference. In addition, we analyze the outage capacity with multiple primary user interference with the error variance under the joint peak transmit power and peak interference power constraint, as well as individual peak interference power constraint. Moreover, we investigate the power expenditure to achieve the lower limit of ergodic and outage capacity. The minimum mean square channel estimation technique is used for the channel estimation between the CU and PU. However, the convex optimization method is employed for the optimal power allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Kolodzy, Spectrum policy task force report federal Commun. Comm. Washington, DC, Rep. ET Docket 02-135, Nov 2002

    Google Scholar 

  2. J. Marinho, E. Monterio, Cognitive radio: Survey on communication protocols, spectrum decision issues and future research directions. Wireless Netw. 18, 147–164 (2011)

    Article  Google Scholar 

  3. J. Mitolla, Cognitive radio architecture evolution: Annals of telecommunication. Ann. Telecommun. 64, 419–441 (2009)

    Article  Google Scholar 

  4. A. Khattab, M.A. Bayoumi, Standardization of cognitive radio networking: A comprehensive survey. Ann. Telecommun. 70(11), 465–477 (2015)

    Article  Google Scholar 

  5. Y.-C. Liang, K.-C. Chen, G.Y. Li, P. Mahonen, Cognitive radio networking and communication: An overview. IEEE Trans. Veh. Tech. 60(7), 3386–3407 (2011)

    Google Scholar 

  6. R.C. Santiago, Michał Szydełko, Adrian Kliks, Fotis Foukalas, Yoram Haddad, Keith E. Nolan, Mark Y. Kelly, Moshe T. Masonta, Ilangko Balasingham, 5G: The convergence of wireless communications. Wireless Pers. Commun. 83(3), 1617–1642 (2015)

    Google Scholar 

  7. Shweta Pandit, G. Singh, An overview of spectrum sharing techniques in cognitive radio communication system. Wireless Network (Online), Dec 2015. doi:10.1007/s11276-015-1171-1

  8. H.A. Suraweera, P.J. Smith, M. Shafi, Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans. Veh. Tech. 59(4), 1811–1822 (2010)

    Article  Google Scholar 

  9. K.B. Letaief, W. Zhang, Cooperative communications for cognitive radio networks. Proc. IEEE 97(5), 878–893 (2009)

    Article  Google Scholar 

  10. Z. Wang, W. Zhang, Opportunistic spectrum access in cognitive relay networks based on white space modeling. in Proc. IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, FL, Dec 2010, p. 1–5

    Google Scholar 

  11. X. Kang, Ying-Chang Liang, Arumugam Nallanathan, Hari Krishna Garg, and Rui Zhang, Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Trans. Wireless Commun. 8(2), 940–950 (2009)

    Google Scholar 

  12. D.I. Kim, L.B. Le, E. Hossain, Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans. Wireless Commun. 7(12), 5517–5527 (2008)

    Article  Google Scholar 

  13. L.B. Le, E. Hossain, Resource allocation for spectrum underlay in cognitive radio networks. IEEE Trans. Wireless Commun. 7(12), 5306–5315 (2008)

    Article  Google Scholar 

  14. D. Li, Efficient power allocation for multiuser cognitive radio networks. Wireless Pers. Commun. 59, 589–597 (2010)

    Article  Google Scholar 

  15. S. Vassaki, M.I. Poulakis, A.D. Panagopoulous, P. Constantinou, QoS driven power allocation under peak and average interference power constraints in cognitive radio networks. Wireless Pers. Commun. 78, 449–474 (2014)

    Article  Google Scholar 

  16. S. Singh, D. Teal Paul, A. Dmochowski Pawel, and Alan J. Coulson, Interference management in cognitive radio systems with feasibility detection. IEEE Trans. Veh. Tech. 62(8), 3711–3720 (2013)

    Google Scholar 

  17. S. Parsaeefard, A.R. Sharafat, Robust distributed power control in cognitive radio networks. IEEE Trans. Mob. Comput. 12(4), 609–620 (2013)

    Article  Google Scholar 

  18. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, U.K., 2005)

    Book  MATH  Google Scholar 

  19. Z. Rezki, M.-S. Alouini, Ergodic capacity of cognitive radio under imperfect channel-state information. IEEE Trans. Veh. Tech. 61(5), 2108–2119 (2012)

    Article  Google Scholar 

  20. L. Musavian, S. Aissa, Fundamental capacity limits of cognitive radio in fading environments with imperfect channel state information. IEEE Trans. Commun. 57(11), 3472–3480 (2009)

    Article  Google Scholar 

  21. A.K. Farraj, S. Ekin, Performance of cognitive radios in dynamic fading channels under primary outage constraint. Wireless Pers. Commun. 73(8), 637–649 (2013)

    Article  Google Scholar 

  22. R. Zhang, S. Cui, Y.-C. Liang, On ergodic sum capacity of fading cognitive multiple access and broadcast channels. in Proc. IEEE Annual Allerton Conf. on Communication, Control and Computing (Urbana-Champaign, IL, 2008), p. 879–886

    Google Scholar 

  23. K. Son, B.C. Jung, S. Chong, D.K. Sung, Power allocation policies with full and partial inter- system channel state information for cognitive radio networks. Wireless Netw. 19, 99–113 (2012)

    Article  Google Scholar 

  24. F.R. Mireles, Outage capacity for secondary users due to bandwidth fluctuations: multicarrier versus single carrier. Wireless Pers. Commun. 78, 915–925 (2014)

    Article  Google Scholar 

  25. Md. F. Kader, Asaduzzaman, M.M. Hoque, Outage Capacity analysis of a cooperative relaying scheme in interference limited cognitive radio networks. Wireless Pers. Commun. 79, 2127–2140 (2014)

    Google Scholar 

  26. V. Bhaskar, B. Dutta, Ergodic and outage capacity maximization of cognitive radio networks in cooperative relay environment using optimal power allocation. Ann. Telecommun. 69, 621–632 (2014)

    Article  Google Scholar 

  27. A.K. Farraj, S.L. Miller, Scheduling in a spectrum sharing cognitive environment under outage probability constraint. Wireless Pers. Commun. 70, 785–805 (2012)

    Article  Google Scholar 

  28. F. Wang, X. Liao, S. Guo, H. Huang, Jointly optimal congestion and power control for Rayleigh faded channels with outage constraints. Wireless Pers. Commun. 77, 101–125 (2013)

    Article  Google Scholar 

  29. A.K. Farraj, E.M. Hamma, Impact of quality of service constraints on the performance of spectrum sharing cognitive users. Wireless Pers. Commun. 69, 673–688 (2012)

    Article  Google Scholar 

  30. B. Bharti, G. Singh, Analysis of outage capacity of cognitive radio network with imperfect channel state information. in Proc. IEEE Int. Conf. on Signal Processing and Communication India, March 16–18, 2015, pp. 1–6

    Google Scholar 

  31. S. Pandit, G. Singh, Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Netw. 21(4), 1275–1288 (2015)

    Article  Google Scholar 

  32. D. Xu, Z. Feng, P. Zhang, On the impacts of channel estimation error and feedback delay on the ergodic capacity for the spectrum sharing cognitive radio. Wireless Per. Commun. 72(4), 1875–1887 (2013)

    Article  Google Scholar 

  33. L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels-Part I: Ergodic capacity. IEEE Trans. Inf. Theory 47(3), 1083–1102 (2001)

    Article  MATH  Google Scholar 

  34. L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels-Part II: Outage capacity. IEEE Trans. Inf. Theory 47(3), 1103–1127 (2001)

    Article  MATH  Google Scholar 

  35. M. Gastpar, On capacity under receive and spatial spectrum-sharing constraints. IEEE Trans. Inf. Theory 53(2), 471–487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Sboui, Z. Rezki, M.-S. Alouini, A unified framework for the ergodic capacity of spectrum sharing cognitive radio system. IEEE Trans. Wireless Commun. 12(2), 877–887 (2013)

    Article  Google Scholar 

  37. L. Musavian, S. Aissa, Capacity and power allocation for spectrum-sharing communications in fading channels. IEEE Trans. Wireless Commun. 8(1), 148–156 (2009)

    Article  Google Scholar 

  38. A. Ghasemi, E.S. Sousa, Fundamental limits of spectrum-sharing in fading environment. IEEE Trans. Wireless Commu. 6(3), 649–658 (2007)

    Article  Google Scholar 

  39. L. Zhang, Y.C. Liang, Y. Xin, Robust cognitive beam forming with partial channel state information. IEEE Trans. Wireless Commun. 8(8), 4143–4153 (2009)

    Article  Google Scholar 

  40. L. Musavian, S. Aissa, Fundamental capacity limits of cognitive radio in fading environment with imperfect channel information. IEEE Trans. Wireless Communication 57(11), 3472–3480 (2009)

    Article  Google Scholar 

  41. S. Boydand, L. Vandenberghe, Convex Optimization. (Cambridge University Press, Cambridge, UK, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Pandit .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pandit, S., Singh, G. (2017). Capacity Limits Over Fading Environment with Imperfect Channel State Information for Cognitive Radio Networks. In: Spectrum Sharing in Cognitive Radio Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-53147-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53147-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53146-5

  • Online ISBN: 978-3-319-53147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics