Skip to main content

Medium Access Control Protocol for the Distributed Cognitive Radio Network

  • Chapter
  • First Online:
Spectrum Sharing in Cognitive Radio Networks

Abstract

A key challenge in a cognitive radio network is to have an efficient sensing and non-interfering spectrum access decision protocol that enables cognitive users to reserve chunks of the spectrum for certain periods of time. However, the modeling of variable bandwidths for communication in cognitive radio is very complicated, and channel accessing policies must be defined for the cognitive radio users. In this chapter, we compare various medium access control (MAC) protocols for distributed cognitive radio networks and propose a novel multichannel cooperative MAC protocol for distributed cognitive radio networks which has a backoff algorithm for contention solving among the competing cognitive users. The proposed MAC protocol consists of a control channel on which the cognitive users cooperate with each other. The control channel cooperation among the cognitive users is performed by presenting the sensing results of all cognitive users on the control channel, then the idle channels from the pool of total available idle channels, whose information is available on the control channel, are selected by the cognitive users. Each channel is divided into cycle time, which is further divided into four intervals: idle interval, sensing–sharing interval, contention interval, and data transmission interval. The backoff algorithm for solving collisions among the competing users allows the collided cognitive users to succeed by selecting another contention slot from the expanded contention window. The increased number of successful users enhances the throughput of the cognitive radio network by transmitting their data over the detected idle licensed channels. An optimal number of contention slots is identified that maximizes the number of successful cognitive users as well as throughput. The proposed MAC protocol optimizes the number of contention slots depending on the number of cognitive users in comparison to the fixed number of slots in the self-scheduled multichannel-MAC (SMC-MAC) protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Jia, Q. Zhang, X. Shen, HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE J. Sel. Areas Commun. 26(1), 106–117 (2008)

    Article  Google Scholar 

  2. C. Cordeiro, K. Challapali, C-MAC: A cognitive MAC protocol for multi-channel wireless networks, in Proceedings of 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, 17–20 April 2007, pp. 147–157

    Google Scholar 

  3. H. Su, X. Zhang, CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks, in Proceedings of IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), Newport Beach, CA, June 2008, pp. 1–8

    Google Scholar 

  4. L. B. Le, E. Hossain, OSA-MAC: A multi-channel MAC protocol for opportunistic spectrum access in cognitive radio networks, in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Las Vegas, NV, 31 March–3 April 2008, pp. 1426–1430

    Google Scholar 

  5. S.- H. Lee, B.-J. Lee, S.-H. Rhee, Efficient utilization of available channels in dynamic spectrum access networks. Wire. Pers. Comm. 67(1):95–104 (2012)

    Google Scholar 

  6. P. Papadimitratos, S. Sankaranarayanan, A. Mishra, A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Commun. Mag. 43(12), S10–S14 (2005)

    Article  Google Scholar 

  7. A. Sabharwal, A. Khoshnevis, E. Knightly, Opportunistic spectral usage: Bounds and a multi-band CSMA/CA protocol. IEEE/ACM Trans. on Networking 15(3), 533–545 (2007)

    Article  Google Scholar 

  8. S. Lim, T.-J. Lee, A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications. IEICE Trans. Comm. E94-B(6):1657–1668 2011

    Google Scholar 

  9. K. Thilina, E. Hossain, and D. Kim, DCCC-MAC: A dynamic common control channel-based MAC protocol for cellular cognitive radio networks. IEEE Trans. Veh. Technol, PP( 99), (2015). doi:10.1109/TVT.2015.2438058

  10. T.-Z. Oo, N. Tran, D. Dang, Z. Han, L. Le, C.-S. Hong, OMF-MAC: An opportunistic matched filter-based MAC in cognitive radio networks. IEEE Trans. Veh. Tech. PP(99), (2015). doi:10.1109/TVT.2015.2415033

  11. R. Hossain, R.-H. Rijul, M.-A. Razzaque, A.-M.-J. Sarkar, Prioritized medium access control in cognitive radio ad hoc networks: protocol and analysis. Wire. Pers. Comm. 79(3), 2383–2408 (2014)

    Article  Google Scholar 

  12. P. Xie, L. Li, J. Zhu, R. Zheng, M. Zhang, A cooperation and access spectrum sharing protocol with cooperative interference management. Wire. Pers. Comm. 81(3), 997–1015 (2015)

    Article  Google Scholar 

  13. K. Lee, C. Kim, Distributed sequential access MAC protocol for single hop wireless networks. Wire Pers. Comm. 72(4), 2177–2184 (2013)

    Article  Google Scholar 

  14. H. Kim, K.-G. Shin, Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Trans. Mob. Comput. 7(5), 533–545 (2008)

    Article  Google Scholar 

  15. Q. Zhao, L. Tong, A. Swami, Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE J. Sel. Areas Comm. 25(3), 589–600 (2007)

    Article  Google Scholar 

  16. IEEE 802.11, Wireless LAN Medium access control (MAC) and Physical layer (PHY) Specifications., IEEE, (June 2007)

    Google Scholar 

  17. S. Pandit, G. Singh, Throughput enhancement of distributed cognitive radio network using bandwidth wastage in medium access control protocol. Wire. Pers. Comm. (under review), (March 2016)

    Google Scholar 

  18. G.-A. Shah and O.-B. Akan, Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Trans. Veh Technol, 64(2), 757–767 (2015)

    Google Scholar 

  19. K. Bian, J.-M. Park, MAC-layer misbehaviors in multi-Hop cognitive radio networks, in Proceedings of US-Korea Conference on Science, Technology and Entrepreneurship (UKC2006), Teaneck, New Jersey, 65–73 2006

    Google Scholar 

  20. R. Jain, The Art of Computer System Performance Analysis: Techniques for Experimental Design, Measurement Simulation and Modeling (New York, NY, Wiley- Interscience, 1991)

    MATH  Google Scholar 

  21. M. Timmers, S. Pollin, A. Dejonghe, L.-V. Perre, F. Catthoor, A distributed multichannel MAC protocol for multihop cognitive radio networks. IEEE Trans. Veh. Technol. 59(1), 446–459 (2010)

    Article  Google Scholar 

  22. S.C. Jha, M.M. Rashid, V.K. Bhargava, C. Despins, Medium access control in distributed cognitive radio networks. IEEE Wirel. Commun. 18(4), 41–51 (2011)

    Article  Google Scholar 

  23. J. Xiang, Y. Zhang, T. Skeie, Medium access control protocols in cognitive radio networks. Wirel. Comm. Mobile Comput. 10(1), 31–49 (2010)

    Article  Google Scholar 

  24. C. Cormioand, K.R. Chowdhury, A survey on MAC protocols for cognitive radio networks. Ad. Hoc. Netw. 7(7), 1315–1329 (2009)

    Article  Google Scholar 

  25. A. De Domenico, E.C. Strinati, M.G. Di Benedetto, A survey on MAC strategies for cognitive radio networks. IEEE Comm. Surv. Tutorials 14(1), 21–44 (2012)

    Article  Google Scholar 

  26. B.F. Lo, A survey of common control channel design in cognitive radio networks. Phys. Comm. 4(1), 26–39 (2011)

    Article  Google Scholar 

  27. T.V. Krishna, A. Das, A survey on MAC protocols in OSA networks. Comput. Netw. 53(9), 1377–1394 (2009)

    Article  MATH  Google Scholar 

  28. P. Pawelczak, S. Pollin, H.S.W. So, A.R. Bahai, R.V. Prasad, R. Hekmat, Performance analysis of multichannel medium access control algorithms for opportunistic spectrum access. IEEE Trans. Veh. Technol. 58(6), 3014–3031 (2009)

    Article  Google Scholar 

  29. Q. Chen, Y.C. Liang, M. Motani, W.C. Wong, A two-level MAC protocol strategy for opportunistic spectrum access in cognitive radio networks. IEEE Trans. Veh. Technol. 60(5), 2164–2180 (2011)

    Article  Google Scholar 

  30. J. Park, P. Pawelczak, D. Cabric, Performance of joint spectrum sensing and MAC algorithms for multichannel opportunistic spectrum access ad hoc networks. IEEE Trans. Mob. Comput. 10(7), 1011–1027 (2011)

    Article  Google Scholar 

  31. W.S. Jeon, J.A. Han, D.G. Jeong, A novel MAC scheme for multichannel cognitive radio ad hoc networks. IEEE Trans. Mob. Comput. 11(6), 922–934 (2012)

    Article  Google Scholar 

  32. D. Willkomm, S. Machiraju, J. Bolot, A. Wolisz, Primary user behaviour in cellular networks and implications for dynamic spectrum access. IEEE Commun. Mag. 47(3), 88–95 (2009)

    Article  Google Scholar 

  33. I.-F. Akyildiz, W.-Y. Lee, M.-C. Vuran, S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput. Netw. 50(13), 2127–2159 (2006)

    Google Scholar 

  34. Y.-C. Liang, K.-C. Chen, G.-Y. Li, P. Mahonen, Cognitive radio networking and communications: An overview. IEEE Trans. Veh. Technol. 60(7), 3386–3407 (2011)

    Article  Google Scholar 

  35. S. Pandit, G. Singh, Self-scheduled MAC-layer protocol for spectrum sharing in cognitive radio communication, in Proceedings of 6 th IEEE International Conference on Contemporary Computing (IC3), India, Aug. 8–10, 2013, pp. 250–255

    Google Scholar 

  36. Shweta Pandit and G Singh, Backofff algorithm in cognitive radio MAC-protocol for throughput enhancement, IEEE Trans. Veh. Technol. 64(5), 1991–2000 (2015)

    Google Scholar 

  37. A. Ghasemi, E. S. Sousa, Impact of user collaboration on the performance of sensing-based opportunistic spectrum access, in Proceedings of IEEE Vehicular Technology Conference (VTC Fall-06), Montreal, Canada, 1–6 September 2006

    Google Scholar 

  38. W. Ren, Q. Zhao, A. Swami, Power control in cognitive radio networks: how to cross a multi-lane highway. IEEE J. Sel. Areas Comm. 27(7), 1283–1296 (2009)

    Article  Google Scholar 

  39. B. Wild, K. Ramchandran, Detecting primary receivers for cognitive radio applications, in Proceedings of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, (DySPAN’05), November 2005, pp. 124–130

    Google Scholar 

  40. I.F. Akyildiz, W.Y. Lee, M.C. Vuran, S. Mohanty, A survey on spectrum management in cognitive radio networks. IEEE Comm. Mag. 46(4), 40–48 (2008)

    Article  Google Scholar 

  41. S. Mishra, A. Sahai, and R. Brodersen, Cooperative sensing among cognitive radios, in Proceedings of IEEE International Conference on Communications (ICC’06), vol. 4, June 2006, pp. 1658–1663

    Google Scholar 

  42. A. Ghasemi and E. S. Sousa, Collaborative spectrum sensing for opportunistic access in fading environments, in Proceedings of Symposium on Dynamic Spectrum Access Networks (DySPAN’05), Baltimore, MD, USA, November 2005, pp. 131–136

    Google Scholar 

  43. C. M. Cordeiro, K. Challapali, D. Birru, IEEE 802.22: An introduction to the first Wireless Standard based on cognitive radios, J. Comm., Special Issue from selected papers from DySPAN 2005, 1(1):328–337 (April 2006) (Invited Paper)

    Google Scholar 

  44. C. Cordeiro, K. Challapali, M. Ghosh, Cognitive PHY and MAC layers for dynamic spectrum access and sharing of TV bands, in Proceedings of International Workshop on Technology and Policy for Accessing Spectrum (TAPAS’06), Boston, MA, USA, August 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Pandit .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pandit, S., Singh, G. (2017). Medium Access Control Protocol for the Distributed Cognitive Radio Network. In: Spectrum Sharing in Cognitive Radio Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-53147-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53147-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53146-5

  • Online ISBN: 978-3-319-53147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics