Packing: Combinatorial Models for Various Types of Errors

  • Rudolf AhlswedeEmail author
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 13)


The following two lectures are based on the papers (Levenshtein, Sov. Math.-Dokl. 1, 368–371, (1960), [23], Dokl. Akad. Nauk SSSR 163(4), 845–848, (1965), [24]). They were presented in a series of lectures of Levenshtein when he was guest of Rudolf Ahlswede at the university of Bielefeld.


  1. 1.
    K.A.S. Abdel-Ghaffar, H. Fereira, Systematic encoding of the Varshamov-Tennengolts codes and the Constantin-Rao codes. IEEE Trans. Inf. Theory 44(1), 340–345 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    R. Ahlswede, H. Aydinian, L.H. Khachatrian, Undirectional error control codes and related combinatorial problems, in Proceedings of Eight International Workshop on Algebraic and Combinatorial Coding Theory, 8–14 September, Tsarskoe Selo, Russia (2002), pp. 6–9Google Scholar
  3. 3.
    R. Ahlswede, H. Aydinian, L. Khachatrian, L. Tolhuizen, On \(q\)-ary codes correcting all unidirectional errors of a limited magnitude (2006)Google Scholar
  4. 4.
    G.G. Ananiashvili, On a class of asymmetric single-error correcting non-linear codes. Doklady Akad. Nauk. Georgian SSR 53(3), 549–552 (1969)zbMATHGoogle Scholar
  5. 5.
    I. Anderson, Combinatorics of Finite Sets (Clarendon Press, Oxford, 1987)zbMATHGoogle Scholar
  6. 6.
    M. Blaum (ed.), Codes for Detecting and Correcting Unidirectional Errors (IEEE Computer Society Press Reprint Collections, IEEE Computer Society Press, Los Alamitos, 1993)zbMATHGoogle Scholar
  7. 7.
    J.M. Borden, Optimal asymmetric error detecting codes. Inf. Control 53(1–2), 66–73 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Bose, S. Cunningham, Asymmetric Error Correcting Codes, Sequences, II (Positiano 1991) (Springer, New York, 1993), pp. 24–35zbMATHGoogle Scholar
  9. 9.
    B. Bose, S.A. Al-Bassam, On systematic single asymmetric error correcting codes. IEEE Trans. Inf. Theory 46(2), 669–672 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S.D. Constantin, T.R.N. Rao, Concatenated group theoretic codes for binary asymmetric channels. AFIPS Conf. Proc. 46, 837–842 (1979)Google Scholar
  11. 11.
    S.D. Constantin, T.R.N. Rao, On the theory of binary asymmetric error correcting codes. Inf. Control 40(1), 20–36 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ph Ph Delsarte, Piret, Bounds and constructions for binary asymmetric error correcting codes. IEEE Trans. Inf. Theory 27(1), 125–128 (1981)Google Scholar
  13. 13.
    L.E. Dickson, History of the Theory of Numbers, vol. 2 (Chelsea, New York, 1952)Google Scholar
  14. 14.
    P. Erdős, Problems and results from additive number theory. Colloq. Theoretic des Nombres, Bruxelles, 1955, Liege&Paris, 1956Google Scholar
  15. 15.
    G. Fang, H.C.A. van Tilborg, Bound and constructions of asymmetric or unidirectional error-correcting codes. Appl. Algebra Eng. Commun. Eng. 3(4), 269–300 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. Gevorkian, A.G. Mhitarian, Classes of codes that correct single asymmetric errors (in Russian). Dokl. Akad. Nauk Armyan. SSR 70(4), 216–218 (1980)MathSciNetGoogle Scholar
  17. 17.
    B.D. Ginzburg, A number-theoretic function with an application in the theory of coding. Probl. Kybern. 19, 249–252 (1967)zbMATHGoogle Scholar
  18. 18.
    R.W. Hamming, Bell Syst. Tech. J. 29, 147 (1950)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Helleseth, T. Kløve, On group-theoretic codes for asymmetric channels. Inf. Control 49(1), 1–9 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    W.H. Kim, C.V. Freiman, Single error-correcting-codes for asymmetric binary channels. IRE Trans. Inf. Theory IT–5, 62–66 (1959)Google Scholar
  21. 21.
    T. Kløve, Error correcting codes for the asymmetric channel. Report, Department of Mathematics, University of Bergen, 1981 (with updated bibliography in 1995)Google Scholar
  22. 22.
    A.V. Kuznetsov, B.S. Tsybakov, Coding in a memory with defective cells. Problemy Peredachi Informatsii 10(2), 52–60 (1974)MathSciNetzbMATHGoogle Scholar
  23. 23.
    V.I. Levenshtein, A class of systematic codes. Sov. Math.-Dokl. 1, 368–371 (1960)MathSciNetzbMATHGoogle Scholar
  24. 24.
    V.I. Levenshtein, Binary codes with correction for bit losses, gains, and substitutions. Dokl. Akad. Nauk SSSR 163(4), 845–848 (1965)Google Scholar
  25. 25.
    V.I. Levenshtein, Binary codes capable of correcting deletions and insertions, and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)MathSciNetzbMATHGoogle Scholar
  26. 26.
    V.I. Levenshtein, Asymptotically optimum binary code with correction for losses of one or two adjacent bits. Probl. Cybern. 19, 298–304 (1967)Google Scholar
  27. 27.
    S. Lin, D.J. Costello Jr., Error Control Coding: Fundamentals and Applications (Prentice-Hall Inc, Englewood Cliffs, 1983)zbMATHGoogle Scholar
  28. 28.
    F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977)zbMATHGoogle Scholar
  29. 29.
    S.S. Martirossian, Single-error correcting close-packed and perfect codes, in Proceedings of First INTAS International Seminar on Coding Theory and Combinatorics, (Tsahkadzor Armenia) (1996), 90–115Google Scholar
  30. 30.
    L.E. Mazur, Certain codes that correct non-symmetric errors. Probl. Inf. Transm. 10(4), 308–312 (1976)Google Scholar
  31. 31.
    R.J. McEliece, Comments on class of codes for asymmetric channels and a problem from additive theory of numbers. IEEE Trans. Inf. Theory 19(1), 137 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M.N. Nalbandjan, A class of codes that correct multiple asymmetric errors (in Russian). Dokl. Acad. Nauk Georgian SSR 77, 405–408 (1975)MathSciNetzbMATHGoogle Scholar
  33. 33.
    O.S. Oganesyan, V.G. Yagdzhyan, Classes of codes correcting bursts of errors in an asymmetric channel. Problemy Peredachi Informatsii 6(4), 27–34 (1970)MathSciNetzbMATHGoogle Scholar
  34. 34.
    V. Pless, W.C. Huffman, R.A. Brualdi (eds.), Handbook of Coding Theory, vol. I (II (North-Holland, Amsterdam, 1998)zbMATHGoogle Scholar
  35. 35.
    F.F. Sellers Jr., Bit loss and gain correction code. IRE Trans. Inf. Theory IT–8(1), 35–38 (1962)Google Scholar
  36. 36.
    V.I. Siforov, Radiotechn. i. Elektron. 1, 131 (1956)Google Scholar
  37. 37.
    R.P. Stanley, M.F. Yoder, A study of Varshamov codes for asymmetric channels. Jet Propulsion Laboratory, Technical report, 32-1526, vol. 14 (1982), pp. 117–122Google Scholar
  38. 38.
    R.R. Varshamov, Dokl. Akad. Nauk SSSR 117 (1957)Google Scholar
  39. 39.
    R.R. Varshamov, On some features of asymmetric error-correcting linear codes (in Russian). Rep. Acad. Sci. USSR 157(3), 546–548 (1964) (transl: Sov. Phys.-Dokl. 9, 538–540, 1964)Google Scholar
  40. 40.
    R.R. Varshamov, Estimates of the number of signals in codes with correction of nonsymmetric errors (in Russian). Avtomatika i Telemekhanika 25(11), 1628–1629 (1964) (transl. Autom. Remote Control 25, 1468–1469 (1965)Google Scholar
  41. 41.
    R.R. Varshamov, On an arithmetical function applied in coding theory. DAN USSR, Moscow 161(3), 540–542 (1965)MathSciNetGoogle Scholar
  42. 42.
    R.R. Varshamov, On the theory of asymmetric codes (in Russian). Dokl. Akademii Nauk USSR 164, 757–760 (1965) (transl: Sov. Phys.-Dokl. 10, 185–187, 1965)Google Scholar
  43. 43.
    R.R. Varshamov, A general method of constructing asymmetric coding systems, related to the solution of a combinatorial problem proposed by Dixon. Dokl. Akad. Nauk. SSSR 194(2), 284–287 (1970)MathSciNetzbMATHGoogle Scholar
  44. 44.
    R.R. Varshamov, A class of codes for asymmetric channels and a problem from the additive theory of numbers. IEEE Trans. Inf. Theory 19(1), 92–95 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    R.R. Varshamov, G.M. Tenengol’ts, Asymmetrical single error-correcting code. Autom. Telem. 26(2), 288–292 (1965)Google Scholar
  46. 46.
    R.R. Varshamov, G.M. Tenengol’ts, A code that corrects single unsymmetric errors. Avtomatika i Telemekhanika 26(2), 288–292 (1965)Google Scholar
  47. 47.
    R.R. Varshamov, G.M. Tennengolts, A code which corrects single asymmetric errors (in Russian) Avtomat. Telemeh. 26, 282–292 (1965) (transl: Autom. Remote Control 286–290, 1965)Google Scholar
  48. 48.
    R.R. Varshamov, E.P. Zograbjan, A class of codes correcting two asymmetric errors. Trudy Vychisl. Centra Akad. Nauk. Armjan. SSR i Erevan 6, 54–58 (1970)Google Scholar
  49. 49.
    R.R. Varshamov, E.P. Zograbian, Codes correcting packets of non-symmetricerrors (in Russian), in Proceedings of the 4’th Symposium on Problems in Information Systems, vol. 1 (1970), 87–96 (Review in RZM No. 2, V448, 1970)Google Scholar
  50. 50.
    R.R. Varshamov, S.S. Oganesyan, V.G. Yagdzhyan, Non-linear binary codes which correct one and two adjacent errors for asymmetric channels, in Proceedings of the First Conference of Young Specialists at Computer Centers, Erevan, vol. 2 (1969)Google Scholar
  51. 51.
    J.H. Weber, C. de Vroedt, D.E. Boekee, Bounds and constructions for codes correcting unidirectional errors. IEEE Trans. Inf. Theory 35(4), 797–810 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Further Readings

  1. 52.
    M.J. Aaltonen, Linear programming bounds for tree codes. IEEE Trans. Inf. Theory 25, 85–90 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 53.
    M.J. Aaltonen, A new bound on nonbinary block codes. Discret. Math. 83, 139–160 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 54.
    N. Alon, O. Goldreich, J. Hastad, R. Peralta, Simple construction of almost \(k\)-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 55.
    H. Batemann, A. Erdelyi, Higher Transcendental Functions, vol. 2 (McGraw-Hill, New York, 1953)Google Scholar
  5. 56.
    E. Bannai, T. Ito, Algebraic Combinatorics. 1. Association Schemes (Benjamin/Cummings, London, 1984)Google Scholar
  6. 57.
    R.C. Bose, Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166 (1947)MathSciNetzbMATHGoogle Scholar
  7. 58.
    A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs (Springer, Berlin, 1989)CrossRefzbMATHGoogle Scholar
  8. 59.
    R. Calderbank, On uniformly packed \([n, n-k-4]\) codes over \(GF(q)\) and a class of caps in \(PG(k-1, q)\). J. Lond. Math. Soc. 26, 365–384 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 60.
    R. Calderbank, W.M. Kantor, The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 61.
    J.H. Conway, N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 62.
    Ph Delsarte, Four fundamental parameters of a code and their combinatorial significance. Inf. Control 23, 407–438 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 63.
    Ph. Delsarte, An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973)Google Scholar
  13. 64.
    R.H.F. Denniston, Some maximal arcs in finite projective planes. J. Comb. Theory 6, 317–319 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 65.
    C.F. Dunkl, Discrete quadrature and bounds on \(t\)-design. Mich. Math. J. 26, 81–102 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 66.
    E.N. Gilbert, F.J. MacWilliams, N.J.A. Sloane, Codes with detect deception. Bell Syst. Tech. J. 53, 405–424 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 67.
    M.J.E. Golay, Notes on digital coding. Proc. IRE 37, 657 (1949)Google Scholar
  17. 68.
    R.W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  18. 69.
    R. Hill, On the largest size cap in \(S_{5,3}\). Rend. Acad. Naz. Lincei 54(8), 378–384 (1973)zbMATHGoogle Scholar
  19. 70.
    R. Hill, Caps and groups, in Atti dei Covegni Lincei. Colloquio Intern. sulle Theorie Combinatorie (Roma 1973), vol. 17 (Acad. Naz. Lincei) (1976), pp. 384–394Google Scholar
  20. 71.
    G.A. Kabatiansky, V.I. Levenshtein, Bounds for packings on a sphere and in space. Probl. Inf. Transm. 14(1), 1–17 (1978)MathSciNetGoogle Scholar
  21. 72.
    M. Krawtchouk, Sur une géneralisation des polynómes d’Hermite. Compt. Rend. 189, 620–622 (1929)zbMATHGoogle Scholar
  22. 73.
    C.W.M. Lam, V. Pless, There is no (24, 12, 10) self-dual quaternary codes. IEEE Trans. Inf. Theory 36, 1153–1156 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 74.
    V.I. Levenshtein, On choosing polynomials to obtain bounds in packing problem, in Proceedings of the 7th All-Union Conference on Coding Theory and Information Transmission, pt.2, Moscow-Vilnus, USSR (1978), pp. 103–108Google Scholar
  24. 75.
    V.I. Levenshtein, Bounds on the maximal cardinality of a code with bounded modulus of the inner product. Sov. Math.-Dokl. 25(2), 526–531 (1982)Google Scholar
  25. 76.
    V.I. Levenshtein, Bounds for packings of metric spaces and some their applications. Problemy Cybernetiki 40, 43–110, (Moscow (USSR, Nauke), 1983)Google Scholar
  26. 77.
    V.I. Levenshtein, Designs as maximum codes in polynomial metric spaces. Act. Applicandae Mathematicae 29, 1–82 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 78.
    V.I. Levenshtein, Bounds for self-complementary codes and their applications, Eurocode-92, vol. 339, CISM Courses and Lectures (Springer, Wien, 1993), pp. 159–171Google Scholar
  28. 79.
    V.I. Levenshtein, Split orthogonal arrays and maximum resilient systems of functions (Codes, and Cryptography, subm, Designs, 1994)Google Scholar
  29. 80.
    V.I. Levenshtein, Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans. Inf. Theory 41(5), 1303–1321 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 81.
    V.I. Levenshtein, Universal bounds for codes and designs, in Handbook of Coding Theory, ed. by V.S. Pless, W.C. Huffman (Elsevier Science, Amsterdam, 1998)Google Scholar
  31. 82.
    V.I. Levenshtein, Efficient reconstruction of sequences. IEEE Trans. Inf. Theory 47(1), 2–22 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 83.
    C.L. Mallows, N.J.A. Sloane, An upper bounds for self-dual codes. Inf. Control 22, 188–200 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 84.
    R.J. McEliece, E.R. Rodemich, H. Rumsey Jr., L.R. Welch, New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inf. Theory 23, 157–166 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 85.
    A. Neumaier, Combinatorial configurations in terms of distances, Eindhoven University of Technology, Eindhoven, The Netherlands, Memo, 81-00 (Wiskunde) (1981)Google Scholar
  35. 86.
    V. Pless, Introduction to the Theory of Error-Correcting Codes, 2nd edn. (Wiley, New York, 1989)zbMATHGoogle Scholar
  36. 87.
    B. Quist, Some remarks concerning curves of the second degree in finite plane. Ann. Acad. Fenn. Sci. Ser. A 134 (1952)Google Scholar
  37. 88.
    C.R. Rao, Factorial experiments derivable from combinatorial arrangement of arrays. J. R. Stat. Soc. 89, 128–139 (1947)MathSciNetzbMATHGoogle Scholar
  38. 89.
    I. Schoenberg, G. Szegø, An extremum problem for polynomials. Composito Math. 14, 260–268 (1960)Google Scholar
  39. 90.
    N.V. Semakov, V.A. Zinoviev, Equidistant \(q\)-ary codes and resolved balanced incomplete designs. Probl. Inf. Transm. 4(2), 1–7 (1968)Google Scholar
  40. 91.
    N.V. Semakov, V.A. Zinoviev, G.V. Zaitsev, Class of maximal equidistant codes. Probl. Inf. Transm. 5(2), 65–69 (1969)Google Scholar
  41. 92.
    V.M. Sidelnikov, On mutual correlation of sequences. Sov. Math.-Dokl. 12(1), 197–201 (1971)MathSciNetGoogle Scholar
  42. 93.
    V.M. Sidelnikov, On extremal polynomials used to estimate the size of code. Probl. Inf. Transm. 16(3), 174–186 (1980)Google Scholar
  43. 94.
    R.C. Singleton, Maximum distance \(q\)-ary codes. IEEE Trans. Inf. Theory 10, 116–118 (1964)CrossRefzbMATHGoogle Scholar
  44. 95.
    G. Szegø, Orthogonal Polynomials, vol. 23 (AMS Publications, Providence, 1979)Google Scholar
  45. 96.
    H.N. Ward, A bound for divisible codes. IEEE Trans. Inf. Theory 38, 191–194 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 97.
    L.R. Welch, Lower bounds on the maximum correlation of signals. IEEE Trans. Inf. Theory 20, 397–399 (1974)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations