Advertisement

Coding for the Multiple-Access Channel: The Combinatorial Model

  • Rudolf AhlswedeEmail author
Chapter
  • 1.2k Downloads
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 13)

Abstract

The model of multiple-access channels (MACs) is one of the simplest generalizations of the channels with one sender and one receiver: we assume that there are several senders connected with the same receiver.

References

  1. 1.
    R. Ahlswede, Multi-way communication channels, in 2nd International Symposium Information Theory, Armenian SSR, 1971 (Publishing House of the Hungarian Academy of Sciences, Tsahkadzor, 1973), pp. 23–52Google Scholar
  2. 2.
    R. Ahlswede, The capacity region of a channel with two senders and two receivers. Ann. Prob. 2(5), 805–814 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Ahlswede, V.B. Balakirksy, Construction of uniquely decodable codes for the two-user binary adder channel. IEEE Trans. Inf. Theory 45(1), 326–330 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Ahlswede, G. Simonyi, On the optimal structure of recovering set pairs in lattices: the sandglass conjecture. Discrete Math. 128, 389–394 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    V.F. Babkin, A universal encoding method with nonexponential work expediture for a source of independent messages. Problemy Peredachi Informatsii 7(4), 13–21 (1971)MathSciNetGoogle Scholar
  6. 6.
    L.A. Bassalygo, M.S. Pinsker, Evaluation of the asymptotics of the summarized capacity of an \(M\)-frequency \(T\)-user noiseless multiple-access channel, Problemy Peredachi Inf., No. 2, 3–9 (2000); Problems Inf. Transm., 36(2), 91–97 (2000)Google Scholar
  7. 7.
    M. Bierbaum, H.-M. Wallmeier, A note on the capacity region of the multiple-access channel. IEEE Trans. Inf. Theory 25, 484 (1979)Google Scholar
  8. 8.
    S.C. Chang, Further results on coding for \(T\)-user multiple-access channels. IEEE Trans. Inform. Theory 30, 411–415 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S.-C. Chang, E.J. Weldon, Coding for \(T\)-user multiple-access channels. IEEE Trans. Inf. Theory 25, 684–691 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    S.C. Chang, J.K. Wolf, On the \(T\)-user \(M\)-frequency noiseless multiple-access channels with and without intensity information. IEEE Trans. Inf. Theory 27(1), 41–48 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Coebergh van den Braak, H. van Tilborg, A family of good uniquely decodable code pairs for the two-access binary adder channel. IEEE Trans. Inf. Theory 31, 3–9 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    T.M. Cover, Enumerative source coding. IEEE Trans. Inf. Theory 19(1), 73–77 (1973)zbMATHCrossRefGoogle Scholar
  13. 13.
    T.M. Cover, C. Leung, An achievable rate region for the multiple-access channel with feedback. IEEE Trans. Inf. Theory 27(3), 292–298 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)zbMATHCrossRefGoogle Scholar
  15. 15.
    M.A. Deaett, J.K. Wolf, Some very simple codes for the nonsynchronized two-user multiple-access adder channel with binary inputs. IEEE Trans. Inf. Theory 24(5), 635–636 (1978)CrossRefGoogle Scholar
  16. 16.
    G. Dueck, The zero error feedback capacity region of a certain class of multiple-access channels. Probl. Control Inf. Theory 14(2), 89–103 (1985)MathSciNetzbMATHGoogle Scholar
  17. 17.
    T. Ericson, The noncooperative binary adder channel. IEEE Trans. Inf. Theory 32, 365–374 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    T. Ericson, L. Györfi, Superimposed codes in \(R^n\). IEEE Trans. Inf. Theory 34, 877–880 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    P.G. Farrell, Survey of channel coding for multi-user systems, in New Concepts in Multi-User Communications, ed. by J.K. Skwirrzynski (Alphen aan den Rijn, Sijthoff and Noordhoff, 1981), pp. 133–159Google Scholar
  20. 20.
    T. Ferguson, Generalized \(T\)-user codes for multiple-access channels. IEEE Trans. Inf. Theory 28, 775–778 (1982)zbMATHCrossRefGoogle Scholar
  21. 21.
    N.T. Gaarder, J.K. Wolf, The capacity region of a discrete memoryless multiple-access channel can increase with feedback. IEEE Trans. Inf. Theory 21(1), 100–102 (1975)zbMATHCrossRefGoogle Scholar
  22. 22.
    P. Gober, A.J. Han Vinck, Note on “On the asymptotical capacity of a multiple-acces channel” by L. Wilhelmsson and K.S. Zigangirov, Probl. Peredachi Inf., 36(1), 21–25 (2000); Probl. Inf. Trans. 36(1), 19–22 (2000)Google Scholar
  23. 23.
    A.J. Grant, C. Schlegel, Collision-type multiple-user communications. IEEE Trans. Inf. Theory 43(5), 1725–1736 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    T.S. Han, H. Sato, On the zero-error capacity region by variable length codes for multiple channel with feedback, preprintGoogle Scholar
  25. 25.
    A.J. Han Vinck, J. Keuning, On the capacity of the asynchronous \(T\)-user \(M\)-frequency noiseless multiple-access channel without intensity information. IEEE Trans. Inf. Theory 42(6), 2235–2238 (1996)zbMATHCrossRefGoogle Scholar
  26. 26.
    B.L. Hughes, A.B. Cooper, Nearly optimal multiuser codes for the binary adder channel. IEEE Trans. Inf. Theory 42(2), 387–398 (1996)zbMATHCrossRefGoogle Scholar
  27. 27.
    D.B. Jevtić, Disjoint uniquely decodable codebooks for noiseless synchronized multiple-access adder channels generated by integer sets. IEEE Trans. Inf. Theory 38(3), 1142–1146 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    T. Kasami, S. Lin, Coding for a multiple-access channel. IEEE Trans. Inf. Theory 22, 129–137 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    T. Kasami, S. Lin, Bounds on the achievable rates of block coding for a memoryless multiple-access channel. IEEE Trans. Inf. Theory 24(2), 187–197 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    T. Kasami, S. Lin, V.K. Wei, S. Yamamura, Graph theoretic approaches to the code construction for the two-user multiple-access binary adder channel. IEEE Trans. Inf. Theory 29, 114–130 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    G.H. Khachatrian, Construction of uniquely decodable code pairs for two-user noiseless adder channel, Problemy Peredachi Informatsii (1981)Google Scholar
  32. 32.
    G.H. Khachatrian, On the construction of codes for noiseless synchronized \(2\)-user channel. Probl. Control Inf. Theory 11(4), 319–324 (1982)MathSciNetzbMATHGoogle Scholar
  33. 33.
    G.H. Khachatrian, New construction of uniquely decodable codes for two-user adder channel, Colloquim dedicated to the 70-anniversary of Prof (R. Varshamov, Thakhkadzor, Armenia, 1997)Google Scholar
  34. 34.
    G.H. Khachatrian, S.S. Martirossian, Codes for \(T\)-user noiseless adder channel. Prob. Contr. Inf. Theory 16, 187–192 (1987)MathSciNetzbMATHGoogle Scholar
  35. 35.
    G.H. Khachatrian, S.S. Martirossian, Code construction for the \(T\)-user noiseless adder channel. IEEE Trans. Inf. Theory 44, 1953–1957 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    G.H. Khachatrian, H. Shamoyan, The cardinality of uniquely decodable codes for two-user adder channel. J. Inf. Process. Cybernet. EIK 27(7), 351–355 (1991)zbMATHGoogle Scholar
  37. 37.
    H.J. Liao, Multiple-Access Channels, Ph.D. Dissertation, Dept. of Elect. Eng. University of Hawaii (1972)Google Scholar
  38. 38.
    S. Lin, V.K. Wei, Nonhomogeneous trellis codes for the quasi-synchronous multiple-acces binary adder channel with two users. IEEE Trans. Inf. Theory 32, 787–796 (1986)zbMATHCrossRefGoogle Scholar
  39. 39.
    B. Lindström, On a combinatorial problem in number theory. Canad. Math. Bull. 8(4), 477–490 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    B. Lindström, Determining subsets by unramified experiments, in A Survey of Statistical Designs and Linear Models, ed. by J. Srivastava (North Holland Publishing Company, Amsterdam, 1975), pp. 407–418Google Scholar
  41. 41.
    A.W. Marshall, I. Olken, Inequalities: Theory of Majorization and its Applications (Academic Press, New York, 1979)Google Scholar
  42. 42.
    S.S. Martirossian, Codes for noiseless adder channel, in X Prague Conference on Information Theory, pp. 110–111 (1986)Google Scholar
  43. 43.
    S.S. Martirossian, G.H. Khachatrian, Construction of signature codes and the coin weighing problem. Probl. Inf. Transm. 25, 334–335 (1989)Google Scholar
  44. 44.
    J.L. Massey, P. Mathys, The collision channel without feedback. IEEE Trans. Inf. Theory 31, 192–204 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    P. Mathys, A class of codes for a \(T\) active users out of \(M\) multiple access communication system. IEEE Trans. Inf. Theory 36, 1206–1219 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Q.A. Nguyen, Some coding problems of multiple-access communication systems, DSc Dissertation, Hungarian Academy of Sciences (1986)Google Scholar
  47. 47.
    E. Plotnick, Code constructions for asynchronous random multiple-access to the adder channel. IEEE Trans. Inf. Theory 39, 195–197 (1993)CrossRefGoogle Scholar
  48. 48.
    J. Schalkwijk, An algorithm for source coding. IEEE Trans. Inf. Theory 18, 395–399 (1972)zbMATHCrossRefGoogle Scholar
  49. 49.
    J. Schalkwijk, On an extension of an achievable rate region for the binary multiplying channel. IEEE Trans. Inf. Theory 29, 445–448 (1983)MathSciNetCrossRefGoogle Scholar
  50. 50.
    C.E. Shannon, The zero error capacity of a noisy channel. IEEE Trans. Inf. Theory 2, 8–19 (1956)MathSciNetCrossRefGoogle Scholar
  51. 51.
    C.E. Shannon, Two-way communication channels. Proc. 4th Berkeley Symp. Math. Stat. Prob. 1, 611–644 (1961)Google Scholar
  52. 52.
    H.C.A. van Tilborg, Upper bounds on \(|C_2|\) for a uniquely decodable code pair \((C_1, C_2)\) for a two-access binary adder channel. IEEE Trans. Inf. Theory 29, 386–389 (1983)zbMATHCrossRefGoogle Scholar
  53. 53.
    H.C.A. van Tilborg, An upper bound for codes for the noisy two-access binary adder channel. IEEE Trans. Inf. Theory 32, 436–440 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    R. Urbanke, B. Rimoldi, Coding for the \(F\) -adder channel: Two applications of Reed-Solomon codes (IEEE International Symposium on Information Theory, San Antonio, United States, 17–22 January 1993)Google Scholar
  55. 55.
    P. Vanroose, Code construction for the noiseless binary switching multiple-access channel. IEEE Trans. Inf. Theory 34, 1100–1106 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    E.J. Weldon, Coding for a multiple-access channel. Inf. Control 36(3), 256–274 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    L. Wilhelmsson, K.S. Zigangirov, On the asymptotical capacity of a multiple-access channel. Probl. Inf. Trans. 33(1), 12–20 (1997)zbMATHGoogle Scholar
  58. 58.
    F.M.J. Willems, The feedback capacity region of a class of discrete memoryless multiple-access channels. IEEE Trans. Inf. Theory 28, 93–95 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    J.H. Wilson, Error-correcting codes for a \(T\)-user binary adder channel. IEEE Trans. Inf. Theory 34, 888–890 (1988)MathSciNetCrossRefGoogle Scholar
  60. 60.
    J.K. Wolf, Multi-user communication networks, Communication Systems and Random Process Theory, J.K. Skwirrzynski, Ed., Leyden, The Netherlands, Noordhoff Int., 1978Google Scholar
  61. 61.
    Z. Zhang, T. Berger, J.L. Massey, Some families of zero-error block codes for the two-user binary adder channel with feedback. IEEE Trans. Inf. Theory 33, 613–619 (1987)zbMATHCrossRefGoogle Scholar

Further Readings

  1. 62.
    E.R. Berlekamp, J. Justesen, Some long cyclic linear binary codes are not so bad. IEEE Trans. Inf. Theory 20(3), 351–356 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 63.
    R.E. Blahut, Theory and Practice of Error Control Codes (Addison-Wesley, Reading, 1984)Google Scholar
  3. 64.
    E.L. Blokh, V.V. Zyablov, Generalized Concatenated Codes (Sviaz Publishers, Moscow, 1976)zbMATHGoogle Scholar
  4. 65.
    R.C. Bose, S. Chowla, Theorems in the additive theory of numbers. Comment. Math. Helv. 37, 141–147 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 66.
    D.G. Cantor, W.H. Mills, Determination of a subset from certain combinatorial properties. Can. J. Math. 18, 42–48 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 67.
    R.T. Chien, W.D. Frazer, An application of coding theory to document retrieval. IEEE Trans. Inf. Theory 12(2), 92–96 (1966)CrossRefGoogle Scholar
  7. 68.
    R. Dorfman, The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)CrossRefGoogle Scholar
  8. 69.
    D.-Z. Du, F.K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, Singapore, 1993)zbMATHCrossRefGoogle Scholar
  9. 70.
    A.G. Dyachkov, A.J. Macula, V.V. Rykov, New constructions of superimposed codes. IEEE Trans. Inf. Theory 46(1), 284–290 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 71.
    A.G. Dyachkov, V.V. Rykov, A coding model for a multiple-access adder channel. Probl. Inf. Transm. 17(2), 26–38 (1981)MathSciNetGoogle Scholar
  11. 72.
    A.G. Dyachkov, V.V. Rykov, Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)MathSciNetzbMATHGoogle Scholar
  12. 73.
    A.G. Dyachkov, V.V. Rykov, A survey of superimposed code theory. Probl. Control Inf. Theory 12(4), 1–13 (1983)MathSciNetGoogle Scholar
  13. 74.
    P. Erdös, P. Frankl, Z. Füredi, Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51(1–2), 70–89 (1985)MathSciNetzbMATHGoogle Scholar
  14. 75.
    P. Erdös, A. Rényi, On two problems of information theory. Publ. Math. Inst. Hungarian Academy Sci. 8, 229–243 (1963)MathSciNetzbMATHGoogle Scholar
  15. 76.
    T. Ericson, V.A. Zinoviev, An improvement of the Gilbert bound for constant weight codes. IEEE Trans. Inf. Theory 33(5), 721–723 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 77.
    P. Frankl, On Sperner families satisfying an additional condition. J. Comb. Theory Ser. A 20, 1–11 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 78.
    Z. Füredi, On \(r\)-cover free families. J. Comb. Theory 73, 172–173 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 79.
    Z. Füredi, M. Ruszinkó, Superimposed codes are almost big distant ones, in Proceedings of the IEEE International Symposium on Information Theory, 118, Ulm (1997)Google Scholar
  19. 80.
    R.G. Gallager, Information Theory and Reliable Communication (Wiley, New York, 1968)zbMATHGoogle Scholar
  20. 81.
    L. Györfi, I. Vadja, Constructions of protocol sequences for multiple access collision channel without feedback. IEEE Trans. Inf. Theory 39(5), 1762–1765 (1993)zbMATHCrossRefGoogle Scholar
  21. 82.
    F.K. Hwang, A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67, 605–608 (1972)zbMATHCrossRefGoogle Scholar
  22. 83.
    F.K. Hwang, V.T. Sós, Non-adaptive hypergeometric group testing. Studia Scientarium Mathematicarum Hungarica 22, 257–263 (1987)zbMATHGoogle Scholar
  23. 84.
    T. Kasami, S. Lin, Decoding of linear \(\delta \)-decodable codes for multiple-access channel. IEEE Trans. 24(5), 633–635 (1978)Google Scholar
  24. 85.
    T. Kasami, S. Lin, S. Yamamura, Further results on coding for a multiple-access channel, in Conference of the Proceedings Hungarian Colloquium on Information Theory, Keszthely, pp. 369–391 (1975)Google Scholar
  25. 86.
    W.H. Kautz, R.C. Singleton, Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10, 363–377 (1964)zbMATHCrossRefGoogle Scholar
  26. 87.
    G.H. Khachatrian, Decoding for a noiseless adder channel with two users. Problemy Peredachi Informatsii 19(2), 8–13 (1983)MathSciNetGoogle Scholar
  27. 88.
    G.H. Khachatrian, A class of \(\delta \)-decodable codes for binary adder channel with two users, in Proceedings of the International Seminar on “Convolutional Codes, Multiuser Communication”, Sochi, pp. 228–231 (1983)Google Scholar
  28. 89.
    G.H. Khachatrian, New construction of linear \(\delta \)-decodable codes for \(2\)-user adder channels. Probl. Control Inf. Theory 13(4), 275–279 (1984)MathSciNetzbMATHGoogle Scholar
  29. 90.
    G.H. Khachatrian, Coding for adder channel with two users. Probl. Inf. Transm. 1, 105–109 (1985)Google Scholar
  30. 91.
    G.H. Khachatrian, Decoding algorithm of linear \(\delta \)-decodable codes for adder channel with two users, in Proceedings of the 1st Joint Colloqium of the Academy of Sciences of Armenia and Osaka University (Japan) on Coding Theory, Dilijan, pp. 9–19 (1986)Google Scholar
  31. 92.
    G.H. Khachatrian, A survey of coding methods for the adder channel, Numbers, Information, and Complexity (Festschrift for Rudolf Ahlswede), Kluwer, pp. 181–196 (2000)Google Scholar
  32. 93.
    E. Knill, W.J. Bruno, D.C. Torney, Non-adaptive group testing in the presence of error. Discr. Appl. Math. 88, 261–290 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 94.
    H. Liao, A coding theorem for multiple access communication, in Proceedings of the International Symposium on Information Theory (1972)Google Scholar
  34. 95.
    B. Lindström, On a combinatory detection problem I. Publ. Math. Inst. Hungarian Acad. Sci. 9, 195–207 (1964)MathSciNetzbMATHGoogle Scholar
  35. 96.
    N. Linial, Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 97.
    J.H. van Lint, T.A. Springer, Generalized Reed-Solomon codes from algebraic theory. IEEE Trans. Inf. Theory 33, 305–309 (1987)zbMATHCrossRefGoogle Scholar
  37. 98.
    F.J. MacWilliams, N. Sloane, The Theory of Error-correcting Codes (North Holland, Amsterdam, 1977)zbMATHGoogle Scholar
  38. 99.
    E.C. van der Meulen, The discrete memoryless channel with two senders and one receiver, in Proceedings of the 2nd International Symposium on Information Theory, Hungarian Academy of Sciences, pp. 103–135 (1971)Google Scholar
  39. 100.
    Q.A. Nguyen, T. Zeisel, Bounds on constant weight binary superimposed codes. Probl. Control Inf. Theory 17(4), 223–230 (1988)MathSciNetzbMATHGoogle Scholar
  40. 101.
    Q.A. Nguyen, L. Györfi, J.L. Massey, Constructions of binary constrant-weight cyclic codes and cyclically permutable codes. Probl. Control Inf. Theory 38(3), 940–949 (1992)zbMATHGoogle Scholar
  41. 102.
    W.W. Peterson, E.J. Weldon, Error-correcting Codes (Mir, Moscow, 1976)zbMATHGoogle Scholar
  42. 103.
    V.C. da Rocha, Jr., Maximum distance separable multilevel codes. IEEE Trans. Inf. Theory 30(3), 547–548 (1984)Google Scholar
  43. 104.
    V. Rödl, On a packing and covering problem. Europ. J. Comb. 5, 69–78 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 105.
    M. Ruszinkó, Note on the upper bound of the size of the \(r\)-cover-free families. J. Comb. Theory 66(2), 302–310 (1994)zbMATHCrossRefGoogle Scholar
  45. 106.
    P. Smith, Problem E 2536, Amer. Math. Monthly, Vol. 82, No. 3, 300, 1975; Solutions and comments in Vol. 83, No. 6, 484, 1976Google Scholar
  46. 107.
    M. Sobel, P.A. Groll, Group testing to eliminate efficiently all defectives in a binomial sample. Bell Syst. Tech. J. 38, 1178–1252 (1959)MathSciNetCrossRefGoogle Scholar
  47. 108.
    A. Sterrett, On the detection of defective members in large populations. Ann. Math. Stat. 28, 1033–1036 (1957)zbMATHCrossRefGoogle Scholar
  48. 109.
    M. Szegedy, S. Vishwanathan, Locality based graph coloring, in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, San Diego, pp. 201–207 (1993)Google Scholar
  49. 110.
    H.C.A. van Tilborg, An upper bound for codes in a two-access binary erasure channel. IEEE Trans. Inf. Theory 24(1), 112–116 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 111.
    H.C.A. van Tilborg, A few constructions and a short table of \(\delta \)-decodable codepair for the two-access binary adder channel (Univ. of Technology, Technical report, Eindhoven, 1985)Google Scholar
  51. 112.
    M.L. Ulrey, The capacity region of a channel with \(s\) senders and \(r\) receivers. Inf. Control 29, 185–203 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 113.
    J.K. Wolf, Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185–191 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 114.
    K. Yosida, Functional Analysis, 4th edn. (Springer, Berlin, 1974)zbMATHCrossRefGoogle Scholar
  54. 115.
    V.A. Zinoviev, Cascade equal-weight codes and maximal packings. Probl. Control Inf. Theory 12(1), 3–10 (1983)MathSciNetzbMATHGoogle Scholar
  55. 116.
    V.A. Zinovev, S.N. Litzin, Table of best known binary codes Institute of Information Transmission Problems, Preprint, Moscow, (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations