Skip to main content

Coding for the Multiple-Access Channel: The Combinatorial Model

  • Chapter
  • First Online:

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 13))

Abstract

The model of multiple-access channels (MACs) is one of the simplest generalizations of the channels with one sender and one receiver: we assume that there are several senders connected with the same receiver.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Ahlswede, Multi-way communication channels, in 2nd International Symposium Information Theory, Armenian SSR, 1971 (Publishing House of the Hungarian Academy of Sciences, Tsahkadzor, 1973), pp. 23–52

    Google Scholar 

  2. R. Ahlswede, The capacity region of a channel with two senders and two receivers. Ann. Prob. 2(5), 805–814 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Ahlswede, V.B. Balakirksy, Construction of uniquely decodable codes for the two-user binary adder channel. IEEE Trans. Inf. Theory 45(1), 326–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Ahlswede, G. Simonyi, On the optimal structure of recovering set pairs in lattices: the sandglass conjecture. Discrete Math. 128, 389–394 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. V.F. Babkin, A universal encoding method with nonexponential work expediture for a source of independent messages. Problemy Peredachi Informatsii 7(4), 13–21 (1971)

    MathSciNet  Google Scholar 

  6. L.A. Bassalygo, M.S. Pinsker, Evaluation of the asymptotics of the summarized capacity of an \(M\)-frequency \(T\)-user noiseless multiple-access channel, Problemy Peredachi Inf., No. 2, 3–9 (2000); Problems Inf. Transm., 36(2), 91–97 (2000)

    Google Scholar 

  7. M. Bierbaum, H.-M. Wallmeier, A note on the capacity region of the multiple-access channel. IEEE Trans. Inf. Theory 25, 484 (1979)

    Google Scholar 

  8. S.C. Chang, Further results on coding for \(T\)-user multiple-access channels. IEEE Trans. Inform. Theory 30, 411–415 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.-C. Chang, E.J. Weldon, Coding for \(T\)-user multiple-access channels. IEEE Trans. Inf. Theory 25, 684–691 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.C. Chang, J.K. Wolf, On the \(T\)-user \(M\)-frequency noiseless multiple-access channels with and without intensity information. IEEE Trans. Inf. Theory 27(1), 41–48 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Coebergh van den Braak, H. van Tilborg, A family of good uniquely decodable code pairs for the two-access binary adder channel. IEEE Trans. Inf. Theory 31, 3–9 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. T.M. Cover, Enumerative source coding. IEEE Trans. Inf. Theory 19(1), 73–77 (1973)

    Article  MATH  Google Scholar 

  13. T.M. Cover, C. Leung, An achievable rate region for the multiple-access channel with feedback. IEEE Trans. Inf. Theory 27(3), 292–298 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  MATH  Google Scholar 

  15. M.A. Deaett, J.K. Wolf, Some very simple codes for the nonsynchronized two-user multiple-access adder channel with binary inputs. IEEE Trans. Inf. Theory 24(5), 635–636 (1978)

    Article  Google Scholar 

  16. G. Dueck, The zero error feedback capacity region of a certain class of multiple-access channels. Probl. Control Inf. Theory 14(2), 89–103 (1985)

    MathSciNet  MATH  Google Scholar 

  17. T. Ericson, The noncooperative binary adder channel. IEEE Trans. Inf. Theory 32, 365–374 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Ericson, L. Györfi, Superimposed codes in \(R^n\). IEEE Trans. Inf. Theory 34, 877–880 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.G. Farrell, Survey of channel coding for multi-user systems, in New Concepts in Multi-User Communications, ed. by J.K. Skwirrzynski (Alphen aan den Rijn, Sijthoff and Noordhoff, 1981), pp. 133–159

    Google Scholar 

  20. T. Ferguson, Generalized \(T\)-user codes for multiple-access channels. IEEE Trans. Inf. Theory 28, 775–778 (1982)

    Article  MATH  Google Scholar 

  21. N.T. Gaarder, J.K. Wolf, The capacity region of a discrete memoryless multiple-access channel can increase with feedback. IEEE Trans. Inf. Theory 21(1), 100–102 (1975)

    Article  MATH  Google Scholar 

  22. P. Gober, A.J. Han Vinck, Note on “On the asymptotical capacity of a multiple-acces channel” by L. Wilhelmsson and K.S. Zigangirov, Probl. Peredachi Inf., 36(1), 21–25 (2000); Probl. Inf. Trans. 36(1), 19–22 (2000)

    Google Scholar 

  23. A.J. Grant, C. Schlegel, Collision-type multiple-user communications. IEEE Trans. Inf. Theory 43(5), 1725–1736 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. T.S. Han, H. Sato, On the zero-error capacity region by variable length codes for multiple channel with feedback, preprint

    Google Scholar 

  25. A.J. Han Vinck, J. Keuning, On the capacity of the asynchronous \(T\)-user \(M\)-frequency noiseless multiple-access channel without intensity information. IEEE Trans. Inf. Theory 42(6), 2235–2238 (1996)

    Article  MATH  Google Scholar 

  26. B.L. Hughes, A.B. Cooper, Nearly optimal multiuser codes for the binary adder channel. IEEE Trans. Inf. Theory 42(2), 387–398 (1996)

    Article  MATH  Google Scholar 

  27. D.B. Jevtić, Disjoint uniquely decodable codebooks for noiseless synchronized multiple-access adder channels generated by integer sets. IEEE Trans. Inf. Theory 38(3), 1142–1146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Kasami, S. Lin, Coding for a multiple-access channel. IEEE Trans. Inf. Theory 22, 129–137 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kasami, S. Lin, Bounds on the achievable rates of block coding for a memoryless multiple-access channel. IEEE Trans. Inf. Theory 24(2), 187–197 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Kasami, S. Lin, V.K. Wei, S. Yamamura, Graph theoretic approaches to the code construction for the two-user multiple-access binary adder channel. IEEE Trans. Inf. Theory 29, 114–130 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. G.H. Khachatrian, Construction of uniquely decodable code pairs for two-user noiseless adder channel, Problemy Peredachi Informatsii (1981)

    Google Scholar 

  32. G.H. Khachatrian, On the construction of codes for noiseless synchronized \(2\)-user channel. Probl. Control Inf. Theory 11(4), 319–324 (1982)

    MathSciNet  MATH  Google Scholar 

  33. G.H. Khachatrian, New construction of uniquely decodable codes for two-user adder channel, Colloquim dedicated to the 70-anniversary of Prof (R. Varshamov, Thakhkadzor, Armenia, 1997)

    Google Scholar 

  34. G.H. Khachatrian, S.S. Martirossian, Codes for \(T\)-user noiseless adder channel. Prob. Contr. Inf. Theory 16, 187–192 (1987)

    MathSciNet  MATH  Google Scholar 

  35. G.H. Khachatrian, S.S. Martirossian, Code construction for the \(T\)-user noiseless adder channel. IEEE Trans. Inf. Theory 44, 1953–1957 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. G.H. Khachatrian, H. Shamoyan, The cardinality of uniquely decodable codes for two-user adder channel. J. Inf. Process. Cybernet. EIK 27(7), 351–355 (1991)

    MATH  Google Scholar 

  37. H.J. Liao, Multiple-Access Channels, Ph.D. Dissertation, Dept. of Elect. Eng. University of Hawaii (1972)

    Google Scholar 

  38. S. Lin, V.K. Wei, Nonhomogeneous trellis codes for the quasi-synchronous multiple-acces binary adder channel with two users. IEEE Trans. Inf. Theory 32, 787–796 (1986)

    Article  MATH  Google Scholar 

  39. B. Lindström, On a combinatorial problem in number theory. Canad. Math. Bull. 8(4), 477–490 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Lindström, Determining subsets by unramified experiments, in A Survey of Statistical Designs and Linear Models, ed. by J. Srivastava (North Holland Publishing Company, Amsterdam, 1975), pp. 407–418

    Google Scholar 

  41. A.W. Marshall, I. Olken, Inequalities: Theory of Majorization and its Applications (Academic Press, New York, 1979)

    Google Scholar 

  42. S.S. Martirossian, Codes for noiseless adder channel, in X Prague Conference on Information Theory, pp. 110–111 (1986)

    Google Scholar 

  43. S.S. Martirossian, G.H. Khachatrian, Construction of signature codes and the coin weighing problem. Probl. Inf. Transm. 25, 334–335 (1989)

    Google Scholar 

  44. J.L. Massey, P. Mathys, The collision channel without feedback. IEEE Trans. Inf. Theory 31, 192–204 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Mathys, A class of codes for a \(T\) active users out of \(M\) multiple access communication system. IEEE Trans. Inf. Theory 36, 1206–1219 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Q.A. Nguyen, Some coding problems of multiple-access communication systems, DSc Dissertation, Hungarian Academy of Sciences (1986)

    Google Scholar 

  47. E. Plotnick, Code constructions for asynchronous random multiple-access to the adder channel. IEEE Trans. Inf. Theory 39, 195–197 (1993)

    Article  Google Scholar 

  48. J. Schalkwijk, An algorithm for source coding. IEEE Trans. Inf. Theory 18, 395–399 (1972)

    Article  MATH  Google Scholar 

  49. J. Schalkwijk, On an extension of an achievable rate region for the binary multiplying channel. IEEE Trans. Inf. Theory 29, 445–448 (1983)

    Article  MathSciNet  Google Scholar 

  50. C.E. Shannon, The zero error capacity of a noisy channel. IEEE Trans. Inf. Theory 2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  51. C.E. Shannon, Two-way communication channels. Proc. 4th Berkeley Symp. Math. Stat. Prob. 1, 611–644 (1961)

    Google Scholar 

  52. H.C.A. van Tilborg, Upper bounds on \(|C_2|\) for a uniquely decodable code pair \((C_1, C_2)\) for a two-access binary adder channel. IEEE Trans. Inf. Theory 29, 386–389 (1983)

    Article  MATH  Google Scholar 

  53. H.C.A. van Tilborg, An upper bound for codes for the noisy two-access binary adder channel. IEEE Trans. Inf. Theory 32, 436–440 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Urbanke, B. Rimoldi, Coding for the \(F\) -adder channel: Two applications of Reed-Solomon codes (IEEE International Symposium on Information Theory, San Antonio, United States, 17–22 January 1993)

    Google Scholar 

  55. P. Vanroose, Code construction for the noiseless binary switching multiple-access channel. IEEE Trans. Inf. Theory 34, 1100–1106 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. E.J. Weldon, Coding for a multiple-access channel. Inf. Control 36(3), 256–274 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Wilhelmsson, K.S. Zigangirov, On the asymptotical capacity of a multiple-access channel. Probl. Inf. Trans. 33(1), 12–20 (1997)

    MATH  Google Scholar 

  58. F.M.J. Willems, The feedback capacity region of a class of discrete memoryless multiple-access channels. IEEE Trans. Inf. Theory 28, 93–95 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  59. J.H. Wilson, Error-correcting codes for a \(T\)-user binary adder channel. IEEE Trans. Inf. Theory 34, 888–890 (1988)

    Article  MathSciNet  Google Scholar 

  60. J.K. Wolf, Multi-user communication networks, Communication Systems and Random Process Theory, J.K. Skwirrzynski, Ed., Leyden, The Netherlands, Noordhoff Int., 1978

    Google Scholar 

  61. Z. Zhang, T. Berger, J.L. Massey, Some families of zero-error block codes for the two-user binary adder channel with feedback. IEEE Trans. Inf. Theory 33, 613–619 (1987)

    Article  MATH  Google Scholar 

Further Readings

  1. E.R. Berlekamp, J. Justesen, Some long cyclic linear binary codes are not so bad. IEEE Trans. Inf. Theory 20(3), 351–356 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.E. Blahut, Theory and Practice of Error Control Codes (Addison-Wesley, Reading, 1984)

    Google Scholar 

  3. E.L. Blokh, V.V. Zyablov, Generalized Concatenated Codes (Sviaz Publishers, Moscow, 1976)

    MATH  Google Scholar 

  4. R.C. Bose, S. Chowla, Theorems in the additive theory of numbers. Comment. Math. Helv. 37, 141–147 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.G. Cantor, W.H. Mills, Determination of a subset from certain combinatorial properties. Can. J. Math. 18, 42–48 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.T. Chien, W.D. Frazer, An application of coding theory to document retrieval. IEEE Trans. Inf. Theory 12(2), 92–96 (1966)

    Article  Google Scholar 

  7. R. Dorfman, The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)

    Article  Google Scholar 

  8. D.-Z. Du, F.K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, Singapore, 1993)

    Book  MATH  Google Scholar 

  9. A.G. Dyachkov, A.J. Macula, V.V. Rykov, New constructions of superimposed codes. IEEE Trans. Inf. Theory 46(1), 284–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.G. Dyachkov, V.V. Rykov, A coding model for a multiple-access adder channel. Probl. Inf. Transm. 17(2), 26–38 (1981)

    MathSciNet  Google Scholar 

  11. A.G. Dyachkov, V.V. Rykov, Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)

    MathSciNet  MATH  Google Scholar 

  12. A.G. Dyachkov, V.V. Rykov, A survey of superimposed code theory. Probl. Control Inf. Theory 12(4), 1–13 (1983)

    MathSciNet  Google Scholar 

  13. P. Erdös, P. Frankl, Z. Füredi, Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51(1–2), 70–89 (1985)

    MathSciNet  MATH  Google Scholar 

  14. P. Erdös, A. Rényi, On two problems of information theory. Publ. Math. Inst. Hungarian Academy Sci. 8, 229–243 (1963)

    MathSciNet  MATH  Google Scholar 

  15. T. Ericson, V.A. Zinoviev, An improvement of the Gilbert bound for constant weight codes. IEEE Trans. Inf. Theory 33(5), 721–723 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Frankl, On Sperner families satisfying an additional condition. J. Comb. Theory Ser. A 20, 1–11 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Füredi, On \(r\)-cover free families. J. Comb. Theory 73, 172–173 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Füredi, M. Ruszinkó, Superimposed codes are almost big distant ones, in Proceedings of the IEEE International Symposium on Information Theory, 118, Ulm (1997)

    Google Scholar 

  19. R.G. Gallager, Information Theory and Reliable Communication (Wiley, New York, 1968)

    MATH  Google Scholar 

  20. L. Györfi, I. Vadja, Constructions of protocol sequences for multiple access collision channel without feedback. IEEE Trans. Inf. Theory 39(5), 1762–1765 (1993)

    Article  MATH  Google Scholar 

  21. F.K. Hwang, A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67, 605–608 (1972)

    Article  MATH  Google Scholar 

  22. F.K. Hwang, V.T. Sós, Non-adaptive hypergeometric group testing. Studia Scientarium Mathematicarum Hungarica 22, 257–263 (1987)

    MATH  Google Scholar 

  23. T. Kasami, S. Lin, Decoding of linear \(\delta \)-decodable codes for multiple-access channel. IEEE Trans. 24(5), 633–635 (1978)

    Google Scholar 

  24. T. Kasami, S. Lin, S. Yamamura, Further results on coding for a multiple-access channel, in Conference of the Proceedings Hungarian Colloquium on Information Theory, Keszthely, pp. 369–391 (1975)

    Google Scholar 

  25. W.H. Kautz, R.C. Singleton, Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  26. G.H. Khachatrian, Decoding for a noiseless adder channel with two users. Problemy Peredachi Informatsii 19(2), 8–13 (1983)

    MathSciNet  Google Scholar 

  27. G.H. Khachatrian, A class of \(\delta \)-decodable codes for binary adder channel with two users, in Proceedings of the International Seminar on “Convolutional Codes, Multiuser Communication”, Sochi, pp. 228–231 (1983)

    Google Scholar 

  28. G.H. Khachatrian, New construction of linear \(\delta \)-decodable codes for \(2\)-user adder channels. Probl. Control Inf. Theory 13(4), 275–279 (1984)

    MathSciNet  MATH  Google Scholar 

  29. G.H. Khachatrian, Coding for adder channel with two users. Probl. Inf. Transm. 1, 105–109 (1985)

    Google Scholar 

  30. G.H. Khachatrian, Decoding algorithm of linear \(\delta \)-decodable codes for adder channel with two users, in Proceedings of the 1st Joint Colloqium of the Academy of Sciences of Armenia and Osaka University (Japan) on Coding Theory, Dilijan, pp. 9–19 (1986)

    Google Scholar 

  31. G.H. Khachatrian, A survey of coding methods for the adder channel, Numbers, Information, and Complexity (Festschrift for Rudolf Ahlswede), Kluwer, pp. 181–196 (2000)

    Google Scholar 

  32. E. Knill, W.J. Bruno, D.C. Torney, Non-adaptive group testing in the presence of error. Discr. Appl. Math. 88, 261–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Liao, A coding theorem for multiple access communication, in Proceedings of the International Symposium on Information Theory (1972)

    Google Scholar 

  34. B. Lindström, On a combinatory detection problem I. Publ. Math. Inst. Hungarian Acad. Sci. 9, 195–207 (1964)

    MathSciNet  MATH  Google Scholar 

  35. N. Linial, Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.H. van Lint, T.A. Springer, Generalized Reed-Solomon codes from algebraic theory. IEEE Trans. Inf. Theory 33, 305–309 (1987)

    Article  MATH  Google Scholar 

  37. F.J. MacWilliams, N. Sloane, The Theory of Error-correcting Codes (North Holland, Amsterdam, 1977)

    MATH  Google Scholar 

  38. E.C. van der Meulen, The discrete memoryless channel with two senders and one receiver, in Proceedings of the 2nd International Symposium on Information Theory, Hungarian Academy of Sciences, pp. 103–135 (1971)

    Google Scholar 

  39. Q.A. Nguyen, T. Zeisel, Bounds on constant weight binary superimposed codes. Probl. Control Inf. Theory 17(4), 223–230 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Q.A. Nguyen, L. Györfi, J.L. Massey, Constructions of binary constrant-weight cyclic codes and cyclically permutable codes. Probl. Control Inf. Theory 38(3), 940–949 (1992)

    MATH  Google Scholar 

  41. W.W. Peterson, E.J. Weldon, Error-correcting Codes (Mir, Moscow, 1976)

    MATH  Google Scholar 

  42. V.C. da Rocha, Jr., Maximum distance separable multilevel codes. IEEE Trans. Inf. Theory 30(3), 547–548 (1984)

    Google Scholar 

  43. V. Rödl, On a packing and covering problem. Europ. J. Comb. 5, 69–78 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Ruszinkó, Note on the upper bound of the size of the \(r\)-cover-free families. J. Comb. Theory 66(2), 302–310 (1994)

    Article  MATH  Google Scholar 

  45. P. Smith, Problem E 2536, Amer. Math. Monthly, Vol. 82, No. 3, 300, 1975; Solutions and comments in Vol. 83, No. 6, 484, 1976

    Google Scholar 

  46. M. Sobel, P.A. Groll, Group testing to eliminate efficiently all defectives in a binomial sample. Bell Syst. Tech. J. 38, 1178–1252 (1959)

    Article  MathSciNet  Google Scholar 

  47. A. Sterrett, On the detection of defective members in large populations. Ann. Math. Stat. 28, 1033–1036 (1957)

    Article  MATH  Google Scholar 

  48. M. Szegedy, S. Vishwanathan, Locality based graph coloring, in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, San Diego, pp. 201–207 (1993)

    Google Scholar 

  49. H.C.A. van Tilborg, An upper bound for codes in a two-access binary erasure channel. IEEE Trans. Inf. Theory 24(1), 112–116 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. H.C.A. van Tilborg, A few constructions and a short table of \(\delta \)-decodable codepair for the two-access binary adder channel (Univ. of Technology, Technical report, Eindhoven, 1985)

    Google Scholar 

  51. M.L. Ulrey, The capacity region of a channel with \(s\) senders and \(r\) receivers. Inf. Control 29, 185–203 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.K. Wolf, Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185–191 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Yosida, Functional Analysis, 4th edn. (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  54. V.A. Zinoviev, Cascade equal-weight codes and maximal packings. Probl. Control Inf. Theory 12(1), 3–10 (1983)

    MathSciNet  MATH  Google Scholar 

  55. V.A. Zinovev, S.N. Litzin, Table of best known binary codes Institute of Information Transmission Problems, Preprint, Moscow, (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Ahlswede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ahlswede, R. (2018). Coding for the Multiple-Access Channel: The Combinatorial Model. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Combinatorial Methods and Models. Foundations in Signal Processing, Communications and Networking, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-53139-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53139-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53137-3

  • Online ISBN: 978-3-319-53139-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics