Advertisement

Results for Classical Extremal Problems

  • Rudolf Ahlswede
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 13)

Abstract

In order to prove Kraft’s ([7] inequality for prefix codes the codewords were regarded as vertices in a rooted tree. For any rooted tree it is possible to define a relation \(\preceq \), say, on the vertices of the tree by \(x\preceq y\), if and only if there exists a path from the root through x to y. This relation has the following properties (\(\mathcal{X}\) denotes the set of vertices of the tree)

References

  1. 1.
    R. Ahlswede, V. Blinovsky, Lectures on Advances in Combinatorics (Springer, Berlin, 2008)CrossRefMATHGoogle Scholar
  2. 2.
    R. Ahlswede, Z. Zhang, An identity in combinatorial extremal theory. Adv. Math. 80(2), 137–151 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Z. Baranyai, On the Factorization of the Complete Uniform Hypergraph, in Infinite and Finite Sets, ed. by A. Hajnal, R. Rado, V.T. Sos (Amsterdam, 1975), pp. 91–108Google Scholar
  4. 4.
    A. Brouwer, A. Schrijver, Uniform hypergraphs, packing and covering in combinatorics. Math. Centre Tracts 106, 39–73 (1979)Google Scholar
  5. 5.
    E.N. Gilbert, A comparison of signalling alphabets. Bell Syst. Tech. J. 31, 504–522 (1952)CrossRefGoogle Scholar
  6. 6.
    S.M. Johnson, A new upper bound for error-correcting codes. IRE Trans. Inf. Theory 8, 203–207 (1962)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L.G. Kraft, A device for quantizing, grouping, and coding amplitude modulated pulses, MS Thesis, Cambridge, 1949Google Scholar
  8. 8.
    D. Lubell, A short proof of Sperner’s lemma. J. Comb. Theory 1, 299 (1966)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    L.D. Meshalkin, Generalization of Sperner’s theorem on the number of subsets of a finite set. Theory Probab. Appl. 8, 203–204 (1963)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Plotkin, Binary codes with specified minimum distance. IRE Trans. Inf. Theory 6, 445–450 (1960)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Sperner, Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift (in German) 27(1), 544–548 (1928)CrossRefMATHGoogle Scholar
  12. 12.
    P. Turan, Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok. 48, 436–452 (1941)MathSciNetMATHGoogle Scholar
  13. 13.
    J.H. van Lint, R.M. Wilson, A Course in Combinatorics, 2nd edn. (Cambridge University Press, Cambridge, 2001)CrossRefMATHGoogle Scholar
  14. 14.
    K. Yamamoto, Logarithmic order of free distributive lattice. J. Math. Soc. Jpn. 6, 343–353 (1954)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations