Deep Brain Stimulation: A Promising Therapeutic Approach to the Treatment of Severe Depressed Patients — Current Evidence and Intrinsic Mechanisms

  • Laura Perez-Caballero
  • Sonia Torres-Sanchez
  • Juan Antonio Mico
  • Esther Berrocoso


Major depressive disorder represents one of the most severe disabling disorders, affecting around 4.7% of the worldwide population. Many patients suffering this neuropsychiatric illness are treated successfully with various treatments, including antidepressant drugs and psychotherapy but also physical measures (electroconvulsive therapy, repetitive transcranial magnetic stimulation, vagal nerve stimulation). Despite the different treatment approaches available, unfortunately 30–40% of the patients fail to respond to most first-line treatments, and between 5 and 10% do not respond to conventional therapy at all. Thus, a considerable number of patients have a poor outcome and unfortunately fail to reach sustained remission. These data highlight the need to find new therapeutic approaches that especially focus on refractory patients. In this context, deep brain stimulation (DBS) emerges as an innovative physical treatment for refractory depressed patients. DBS has been successfully used for years in some neurological disorders such as Parkinson’s disease. Currently, in addition to its use in treating depression, DBS is also being tested in other psychiatric illness such as obsessive–compulsive disorder. Most studies on DBS have focused on efficiency and efficacy, or improvement in the technique, and a few were devoted to understanding the intrinsic mechanisms responsible. Understanding the molecular mechanisms of action of DBS is currently considered as crucial, not only in order to understand its efficacy but also to propose new antidepressant approaches. The aim of this chapter is to review the foundations, the efficacy, and the efficiency of DBS in depression, and to provide insight into the intrinsic mechanisms of action described until now. In addition, future developments will be discussed.


Deep brain stimulation Major depressive disorder Ventral capsule/ventral striatum Nucleus accumbens Subgenual cingulate cortex Lateral habenula Medial forebrain bundle Inferior thalamic peduncle 



This study was supported by grants from the “Instituto de Salud Carlos III (Madrid, Spain)”, co-financed by the “Fondo Europeo de Desarrollo Regional” (FEDER) (PI13/02659); the “Ministerio de Economía y Competitividad”, co-financed by FEDER (SAF2015-68647-R (MINECO/FEDER)); the “Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM”, Spain (G18); the “Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía”, Spain (CTS-510 and CTS-7748); 2015 NARSAD Young Investigator Grant from the Brain Behavior Research Foundation; and FPI (2011-145) fellowship. The authors declare no conflict of interest.


  1. 1.
    Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, et al. Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med. 2013;43(3):471–81.PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization. World report on disability. Geneva: WHO; 2011.Google Scholar
  3. 3.
    Murray CJ, Lopez AD. Evidence-based health policy – lessons from the Global Burden of Disease Study. Science. 1996;274(5288):740–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Frank E, Prien RF, Jarrett RB, Keller MB, Kupfer DJ, Lavori PW, et al. Conceptualization and rationale for consensus definitions of terms in major depressive disorder. Remission, recovery, relapse, and recurrence. Arch Gen Psychiatry. 1991;48(9):851–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Cuijpers P, Clignet F, van Meijel B, van Straten A, Li J, Andersson G. Psychological treatment of depression in inpatients: a systematic review and meta-analysis. Clin Psychol Rev. 2011;31(3):353–60.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62(11):1208–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58(5):347–54.PubMedCrossRefGoogle Scholar
  9. 9.
    UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361(9360):799–808.CrossRefGoogle Scholar
  10. 10.
    Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry. 2003;53(8):649–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Hawton K, Casanas ICC, Haw C, Saunders K. Risk factors for suicide in individuals with depression: a systematic review. J Affect Disord. 2013;147(1–3):17–28.PubMedCrossRefGoogle Scholar
  12. 12.
    Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370(9590):851–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Hardesty DE, Sackeim HA. Deep brain stimulation in movement and psychiatric disorders. Biol Psychiatry. 2007;61(7):831–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol. 2013;26(4):374–80.PubMedCrossRefGoogle Scholar
  16. 16.
    McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res. 1998;118(4):489–500.PubMedCrossRefGoogle Scholar
  18. 18.
    Kringelbach ML, Green AL, Aziz TZ. Balancing the brain: resting state networks and deep brain stimulation. Front Integr Neurosci. 2011;5:8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010;38(3):329–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Greenberg BD, Gabriels LA, Malone DA, Jr Rezai AR, Friehs GM, Okun MS, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry. 2010;15(1):64–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354(9189):1526.PubMedCrossRefGoogle Scholar
  22. 22.
    Aouizerate B, Cuny E, Martin-Guehl C, Guehl D, Amieva H, Benazzouz A, et al. Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg. 2004;101(4):682–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology. 2006;31(11):2384–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Malone DA, Jr Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O’Reardon JP, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78(4):240–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35(1):27–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Gorwood P. Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci. 2008;10(3):291–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, et al. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry. 2005;62(11):1228–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Bewernick BH, Kayser S, Sturm V, Schlaepfer TE. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology. 2012;37(9):1975–85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33(2):368–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Grubert C, Hurlemann R, Bewernick BH, Kayser S, Hadrysiewicz B, Axmacher N, et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J Biol Psychiatry. 2011;12(7):516–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Kubu CS, Malone DA, Chelune G, Malloy P, Rezai AR, Frazier T, et al. Neuropsychological outcome after deep brain stimulation in the ventral capsule/ventral striatum for highly refractory obsessive-compulsive disorder or major depression. Stereotact Funct Neurosurg. 2013;91(6):374–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Hamani C, Amorim BO, Wheeler AL, Diwan M, Driesslein K, Covolan L, et al. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol Dis. 2014;71:205–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Lim LW, Janssen ML, Kocabicak E, Temel Y. The antidepressant effects of ventromedial prefrontal cortex stimulation is associated with neural activation in the medial part of the subthalamic nucleus. Behav Brain Res. 2015;279:17–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002;23(5):238–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl). 1995;121(1):66–72.CrossRefGoogle Scholar
  38. 38.
    Papp M, Willner P, Muscat R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl). 1991;104(2):255–9.CrossRefGoogle Scholar
  39. 39.
    Lim LW, Prickaerts J, Huguet G, Kadar E, Hartung H, Sharp T, et al. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl Psychiatry. 2015;5:e535.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rummel J, Voget M, Hadar R, Ewing S, Sohr R, Klein J, et al. Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression. J Psychiatr Res. 2016;81:36–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Overstreet DH, Wegener G. The Flinders sensitive line rat model of depression – 25 years and still producing. Pharmacol Rev. 2013;65(1):143–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Schmuckermair C, Gaburro S, Sah A, Landgraf R, Sartori SB, Singewald N. Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology. 2013;38(7):​1234–44.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim Y, McGee S, Czeczor JK, Walker AJ, Kale RP, Kouzani AZ, et al. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects. Transl Psychiatry. 2016;6(6):e842.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Iijima M, Ito A, Kurosu S, Chaki S. Pharmacological characterization of repeated corticosterone injection-induced depression model in rats. Brain Res. 2010;1359:75–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Landgraf R, Kessler MS, Bunck M, Murgatroyd C, Spengler D, Zimbelmann M, et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev. 2007;31(1):89–102.PubMedCrossRefGoogle Scholar
  46. 46.
    Gersner R, Toth E, Isserles M, Zangen A. Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol Psychiatry. 2010;67(2):125–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16(4):​525–34.PubMedCrossRefGoogle Scholar
  48. 48.
    van Dijk A, Klanker M, van Oorschot N, Post R, Hamelink R, Feenstra MG, et al. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas. Transl Psychiatry. 2013;3:e289.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984;327(1):1–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ. An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery. 2011;69(6):​1281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Brandeis R, Brandys Y, Yehuda S. The use of the Morris water maze in the study of memory and learning. Int J Neurosci. 1989;48(1–2):29–69.PubMedCrossRefGoogle Scholar
  52. 52.
    Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29(1):2–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12(4):331–59.PubMedCrossRefGoogle Scholar
  56. 56.
    van Dijk A, Mason O, Klompmakers AA, Feenstra MG, Denys D. Unilateral deep brain stimulation in the nucleus accumbens core does not affect local monoamine release. J Neurosci Methods. 2011;202(2):113–8.PubMedCrossRefGoogle Scholar
  57. 57.
    van Dijk A, Klompmakers AA, Feenstra MG, Denys D. Deep brain stimulation of the accumbens increases dopamine, serotonin, and noradrenaline in the prefrontal cortex. J Neurochem. 2012;123(6):897–903.PubMedCrossRefGoogle Scholar
  58. 58.
    Sesia T, Bulthuis V, Tan S, Lim LW, Vlamings R, Blokland A, et al. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Exp Neurol. 2010;225(2):302–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Lahmame A, Armario A. Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: are Wistar Kyoto rats an animal model of subsensitivity to antidepressants? Psychopharmacology (Berl). 1996;123(2):191–8.CrossRefGoogle Scholar
  60. 60.
    Will CC, Aird F, Redei EE. Selectively bred Wistar–Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry. 2003;8(11):925–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Kempermann G, Kronenberg G. Depressed new neurons – adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003;54(5):499–503.PubMedCrossRefGoogle Scholar
  62. 62.
    Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol. 2011;9(4):530–52.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Samuels BA, Hen R. Neurogenesis and affective disorders. Eur J Neurosci. 2011;33(6):1152–9.PubMedCrossRefGoogle Scholar
  64. 64.
    D'Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disord. 2002;4(3):183–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Winter C, Bregman T, Voget M, Raymond R, Hadar R, Nobrega JN, et al. Acute high frequency stimulation of the prefrontal cortex or nucleus accumbens does not increase hippocampal neurogenesis in rats. J Psychiatr Res. 2015;68:27–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, et al. Modulation of cortical–limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry. 2004;61(1):34–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic–cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.PubMedGoogle Scholar
  69. 69.
    Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, et al. Limbic–frontal circuitry in major depression: a path modeling metanalysis. Neuroimage. 2004;22(1):409–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS, et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry. 2007;164(5):778–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168(5):502–10.PubMedCrossRefGoogle Scholar
  73. 73.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Puigdemont D, Perez-Egea R, Portella MJ, Molet J, de Diego-Adelino J, Gironell A, et al. Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol. 2012;15(1):121–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ, Barrocas A, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry. 2012;69(2):150–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McNeely HE, Mayberg HS, Lozano AM, Kennedy SH. Neuropsychological impact of Cg25 deep brain stimulation for treatment-resistant depression: preliminary results over 12 months. J Nerv Ment Dis. 2008;196(5):405–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Serra-Blasco M, de Vita S, Rodriguez MR, de Diego-Adelino J, Puigdemont D, Martin-Blanco A, et al. Cognitive functioning after deep brain stimulation in subcallosal cingulate gyrus for treatment-resistant depression: an exploratory study. Psychiatry Res. 2015;225(3):341–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse. 2004;51(1):32–58.PubMedCrossRefGoogle Scholar
  79. 79.
    Hamani C, Diwan M, Isabella S, Lozano AM, Nobrega JN. Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J Psychiatr Res. 2010;44(11):683–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Jimenez-Sanchez L, Castane A, Perez-Caballero L, Grifoll-Escoda M, Lopez-Gil X, Campa L, et al. Activation of AMPA receptors mediates the antidepressant action of deep brain stimulation of the infralimbic prefrontal cortex. Cereb Cortex. 2016;26(6):2778–89.PubMedCrossRefGoogle Scholar
  81. 81.
    Etievant A, Oosterhof C, Betry C, Abrial E, Novo-Perez M, Rovera R, et al. Astroglial control of the antidepressant-like effects of prefrontal cortex deep brain stimulation. EBioMedicine. 2015;2(8):898–908.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, et al. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry. 2010;67(2):117–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Perez-Caballero L, Perez-Egea R, Romero-Grimaldi C, Puigdemont D, Molet J, Caso JR, et al. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Mol Psychiatry. 2014;19(5):607–14.PubMedCrossRefGoogle Scholar
  84. 84.
    Rea E, Rummel J, Schmidt TT, Hadar R, Heinz A, Mathe AA, et al. Anti-anhedonic effect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: an intracranial self-stimulation paradigm study. Brain Stimul. 2014;7(1):21–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ. The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl). 1988;95(3):298–302.CrossRefGoogle Scholar
  86. 86.
    Bambico FR, Bregman T, Diwan M, Li J, Darvish-Ghane S, Li Z, et al. Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats. Transl Psychiatry. 2015;5:e674.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jimenez-Sanchez L, Linge R, Campa L, Valdizan EM, Pazos A, Diaz A, et al. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology. 2016;108:91–102.PubMedCrossRefGoogle Scholar
  88. 88.
    Veerakumar A, Challis C, Gupta P, Da J, Upadhyay A, Beck SG, et al. Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems. Biol Psychiatry. 2014;76(3):203–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29(4–5):627–47.PubMedCrossRefGoogle Scholar
  90. 90.
    Golden SA, Covington 3rd HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6(8):1183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Edemann-Callesen H, Voget M, Empl L, Vogel M, Wieske F, Rummel J, et al. Medial forebrain bundle deep brain stimulation has symptom-specific anti-depressant effects in rats and as opposed to ventromedial prefrontal cortex stimulation interacts with the reward system. Brain Stimul. 2015;8(4):​714–23.PubMedCrossRefGoogle Scholar
  92. 92.
    Srejic LR, Hamani C, Hutchison WD. High-frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe. Eur J Neurosci. 2015;41(9):1219–26.PubMedCrossRefGoogle Scholar
  93. 93.
    Chakravarty MM, Hamani C, Martinez-Canabal A, Ellegood J, Laliberte C, Nobrega JN, et al. Deep brain stimulation of the ventromedial prefrontal cortex causes reorganization of neuronal processes and vasculature. Neuroimage. 2016;125:422–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33(2):67–75.PubMedCrossRefGoogle Scholar
  95. 95.
    Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–64.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hamani C, Machado DC, Hipolide DC, Dubiela FP, Suchecki D, Macedo CE, et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biol Psychiatry. 2012;71(1):30–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Ramasubbu R, Vecchiarelli HA, Hill MN, Kiss ZH. Brain-derived neurotrophic factor and subcallosal deep brain stimulation for refractory depression. World J Biol Psychiatry. 2015;16(2):135–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Geisler S, Trimble M. The lateral habenula: no longer neglected. CNS Spectr. 2008;13(6):484–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med. 2010;40(4):557–67.PubMedCrossRefGoogle Scholar
  100. 100.
    Sartorius A, Henn FA. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses. 2007;69(6):1305–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry. 2010;67(2):e9–e11.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim Y, Morath B, Hu C, Byrne LK, Sutor SL, Frye MA, et al. Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behav Brain Res. 2016;306:170–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011;470(7335):535–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Meng H, Wang Y, Huang M, Lin W, Wang S, Zhang B. Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res. 2011;1422:32–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Seligman ME, Rosellini RA, Kozak MJ. Learned helplessness in the rat: time course, immunization, and reversibility. J Comp Physiol Psychol. 1975;88(2):542–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Hoyer C, Kranaster L, Sartorius A, Hellweg R, Gass P. Long-term course of brain-derived neurotrophic factor serum levels in a patient treated with deep brain stimulation of the lateral habenula. Neuropsychobiology. 2012;65(3):147–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Madler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci. 2012;24(2):223–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Coenen VA, Schlaepfer TE, Maedler B, Panksepp J. Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev. 2011;35(9):1971–81.PubMedCrossRefGoogle Scholar
  109. 109.
    Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73(12):1204–12.PubMedCrossRefGoogle Scholar
  110. 110.
    Fenoy AJ, Schulz P, Selvaraj S, Burrows C, Spiker D, Cao B, et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J Affect Disord. 2016;203:143–51.PubMedCrossRefGoogle Scholar
  111. 111.
    Bregman T, Reznikov R, Diwan M, Raymond R, Butson CR, Nobrega JN, et al. Antidepressant-like effects of medial forebrain bundle deep brain stimulation in rats are not associated with accumbens dopamine release. Brain Stimul. 2015;8(44):708–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Furlanetti LL, Dobrossy MD, Aranda IA, Coenen VA. Feasibility and safety of continuous and chronic bilateral deep brain stimulation of the medial forebrain bundle in the naive Sprague-Dawley rat. Behav Neurol. 2015;2015:256196.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL, et al. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery. 2005;57(3):585–93.PubMedCrossRefGoogle Scholar
  114. 114.
    Jimenez F, Nicolini H, Lozano AM, Piedimonte F, Salin R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg. 2013;80(3–4):S30. e17-25PubMedGoogle Scholar
  115. 115.
    Jimenez F, Velasco F, Salin-Pascual R, Velasco M, Nicolini H, Velasco AL, et al. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. Acta Neurochir Suppl. 2007;97(2):393–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laura Perez-Caballero
    • 1
  • Sonia Torres-Sanchez
    • 2
  • Juan Antonio Mico
    • 3
  • Esther Berrocoso
    • 1
  1. 1.Department of Psychology, Area of Psychobiology, Neuropsychopharmacology and Psychobiology Research GroupUniversity of Cádiz, CIBER for Mental Health (CIBERSAM), Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA)CádizSpain
  2. 2.Neuropsychopharmacology and Psychobiology Research GroupUniversity of Cádiz, CIBER for Mental Health (CIBERSAM), Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA)CádizSpain
  3. 3.Department of Neuroscience, Pharmacology and Psychiatry, Neuropsychopharmacology and Psychobiology Research GroupCIBER for Mental Health (CIBERSAM), Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA)CádizSpain

Personalised recommendations