Stress and the Dynamic Fear Memory: Synaptic–Cellular Bases and Their Implication for Psychiatry Disorders

  • Gastón Diego Calfa
  • Marcelo Giachero
  • Víctor Alejandro Molina
Chapter

Abstract

There is consensus that the acquisition and storage of relevant aversive information allows organisms to cope with threat situations. Such a mnemonic process is supported by lasting modifications in the aversive neuronal circuitry, resulting in changes in the behavioral response. In this way, the capacity to form long-lasting emotional memories makes it possible to predict and anticipate a potential threat in future situations, thus favoring, from an evolutionary point of view, survival conditions.

In this context, one of the relevant questions is how the perturbations to the modulatory mechanism involved in the adaptive response result in an excessive and inappropriate state of fear and anxiety.

Associative learning related to the emergence of a long-lasting fear memory is critically implicated in the pathogenesis of anxiety disorders, including post-traumatic stress disorder, phobia, and panic. Consonant with such a view, most of the symptoms of these psychiatry entities are due to the persistence and the re-experience of traumatic memories.

Consequently, understanding the neurobiological changes associated with the formation of long-lasting fear memory under particular negative emotional states is relevant for the comprehension of the underlying mechanisms involved in the occurrence of traumatic and persistent memories, as well as for the rebuilding of potential therapeutic tools that could reestablish the adaptive dynamic of the fear memory trace.

In this chapter, we focus on the relevant outcomes observed in animal models of fear learning and memory and their interaction with stressful experiences, along with the observations performed in humans suffering the psychiatric illnesses previously mentioned.

Keywords

Stress Fear Memory Psychiatry Disorders Structural Plasticity 

References

  1. 1.
    Cahill L, McGaugh JL. Modulation of memory storage. Curr Opin Neurobiol. 1996;6(2):237–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 2012;35(1):24–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90(2):419–63.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Herry C, Johansen JP. Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci. 2014;17(12):1644–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Blanchard RJ, Blanchard DC. Crouching as an index of fear. J Comp Physiol Psychol. 1969;67(3):370–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10(6):459–66.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Dudai YRI, Roediger HL, Tulvin E. Memory concepts. In: Roedinger HLD, Dudai Y, Fitzpatrick SM, editors. Science of memory: concepts. Oxford/New York: Oxford University Press; 2007. p. 446.Google Scholar
  8. 8.
    Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Tulving E, Thompson DM. Encoding specificity and retrieval processes in episodic memory. Psychological Review. 1973;80(5):352–73.CrossRefGoogle Scholar
  10. 10.
    McGaugh JL. Memory—a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Wixted JT. On Common Ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia. Psychol Rev. 2004;111(4):864–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294(5544):1030–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Hardt O, Einarsson EO, Nader K. A bridge over troubled water: reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annu Rev Psychol. 2010;61:141–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol. 2001;11(2):180–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Maren S, Aharonov G, Fanselow MS. Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav Neurosci. 1996;110(4):718–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89(1):121–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost. 2005;93(4):655–60.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lewis DJ. Psychobiology of active and inactive memory. Psychol Bull. 1979;86(5):1054–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Tronson NC, Taylor JR. Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci. 2007;8(4):262–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Alberini CM. The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci. 2011;5:12.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lee JL. Memory reconsolidation mediates the updating of hippocampal memory content. Front Behav Neurosci. 2010;4:168.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dudai Y. Memory from A to Z. Keywords, concepts and beyond. Oxford: Oxford University Press; 2002.Google Scholar
  23. 23.
    Sara SJ. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem. 2000;7(2):73–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Dudai Y. Reconsolidation: the advantage of being refocused. Curr Opin Neurobiol. 2006;16(2):174–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JL. Reconsolidation: maintaining memory relevance. Trends Neurosci. 2009;32(8):413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nader K, Hardt O. A single standard for memory: the case for reconsolidation. Nat Rev Neurosci. 2009;10(3):224–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Gisquet-Verrier P, Riccio DC. Memory reactivation effects independent of reconsolidation. Learn Mem. 2012;19(9):401–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodriguez-Ortiz CJ, et al. Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiol Learn Mem. 2008;89(3):Psychological Review. 1973; 80(5): –9.Google Scholar
  29. 29.
    Lee JL. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci. 2008;11(11):1264–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Misanin JR, Miller RR, Lewis DJ. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science. 1968;160(3827):554–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Przybyslawski J, Sara SJ. Reconsolidation of memory after its reactivation. Behav Brain Res. 1997;84(1–2):241–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Pedreira ME, Perez-Cuesta LM, Maldonado H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J Neurosci. 2002;22(18):8305–11.PubMedGoogle Scholar
  34. 34.
    Eisenberg M, et al. Stability of retrieved memory: inverse correlation with trace dominance. Science. 2003;301(5636):1102–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Anokhin KV, Tiunova AA, Rose SP. Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci. 2002;15(11):1759–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Sangha S, et al. Intermediate and long-term memories of associative learning are differentially affected by transcription versus translation blockers in Lymnaea. J Exp Biol. 2003;206(Pt 10):1605–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Walker MP, et al. Dissociable stages of human memory consolidation and reconsolidation. Nature. 2003;425(6958):616–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Bustos SG, Maldonado H, Molina VA. Midazolam disrupts fear memory reconsolidation. Neuroscience. 2006;139(3):831–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Bustos SG, Maldonado H, Molina VA. Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology. 2009;34(2):446–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Inda MC, Muravieva EV, Alberini CM. Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction. J Neurosci. 2011;31(5):1635–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Suzuki A, et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci. 2004;24(20):4787–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Alberini CM. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 2005;28(1):51–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Merlo E, et al. Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn Mem. 2005;12(1):23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kida S, et al. CREB required for the stability of new and reactivated fear memories. Nat Neurosci. 2002;5(4):348–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Miller CA, Marshall JF. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron. 2005;47(6):873–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee JL, Everitt BJ, Thomas KL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science. 2004;304(5672):839–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Tronel S, Milekic MH, Alberini CM. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol. 2005;3(9):293.CrossRefGoogle Scholar
  48. 48.
    Duvarci S, Nader K, LeDoux JE. Activation of extracellular signal-regulated kinase–mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci. 2005;21(1):283–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Kelly A, Laroche S, Davis S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci. 2003;23(12):5354–60.PubMedGoogle Scholar
  50. 50.
    Koh MT, Bernstein IL. Inhibition of protein kinase A activity during conditioned taste aversion retrieval: interference with extinction or reconsolidation of a memory? Neuroreport. 2003;14(3):405–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Milton AL, et al. Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J Neurosci. 2013;33(3):1109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ben Mamou C, Gamache K, Nader K. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat Neurosci. 2006;9(10):1237–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Jarome TJ, et al. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS One. 2011;6(9):24349.CrossRefGoogle Scholar
  54. 54.
    Jarome TJ, Helmstetter FJ. The ubiquitin–proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem. 2013;105:107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee SH, et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science. 2008;319(5867):1253–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Suzuki A, et al. Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learn Mem. 2008;15(6):426–33.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lee JL, Hynds RE. Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus. 2013;23(3):233–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Rescorla RA. Protection from extinction. Learn Behav. 2003;31(2):124–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Rescorla RA. Effect of US habituation following conditioning. J Comp Physiol Psychol. 1973;82(1):137–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Rescorla RA. Inhibition of delay in Pavlovian fear conditioning. J Comp Physiol Psychol. 1967;64(1):​114–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Bouton ME, King DA. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process. 1983;9(3):248–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Baker JD, Azorlosa JL. The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav Neurosci. 1996;110(3):618–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci. 1992;12(3):854–63.PubMedGoogle Scholar
  65. 65.
    Lee H, Kim JJ. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J Neurosci. 1998;18(20):8444–54.PubMedGoogle Scholar
  66. 66.
    Sotres-Bayon F, et al. Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex. 2009;19(2):474–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Ledgerwood L, Richardson R, Cranney J. D-cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci. 2004;118(3):505–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Herry C, et al. Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci. 2006;24(1):261–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang YL, Lu KT. Facilitation of conditioned fear extinction by d-cycloserine is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase cascades and requires de novo protein synthesis in basolateral nucleus of amygdala. Neuroscience. 2005;134(1):247–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Day TA. Defining stress as a prelude to mapping its neurocircuitry: no help from allostasis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(8):1195–200.CrossRefGoogle Scholar
  71. 71.
    Koolhaas JM, et al. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291–301.PubMedCrossRefGoogle Scholar
  72. 72.
    Levine S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology. 2005;30(10):939–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Salvador A. Coping with competitive situations in humans. Neurosci Biobehav Rev. 2005;29(1):195–205.PubMedCrossRefGoogle Scholar
  74. 74.
    Pitman RK, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769–87.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fanselow MS. From contextual fear to a dynamic view of memory systems. Trends Cogn Sci. 2010;14(1):7–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Herry C, et al. Neuronal circuits of fear extinction. Eur J Neurosci. 2010;31(4):599–612.PubMedCrossRefGoogle Scholar
  77. 77.
    Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36(2):529–38.PubMedCrossRefGoogle Scholar
  78. 78.
    LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Giachero M, et al. A BDNF sensitive mechanism is involved in the fear memory resulting from the interaction between stress and the retrieval of an established trace. Learn Mem. 2013;20(5):245–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Giachero M, Calfa GD, Molina VA. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex. Hippocampus. 2015;25(5):545–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Bignante EA, Paglini G, Molina VA. Previous stress exposure enhances both anxiety-like behaviour and p35 levels in the basolateral amygdala complex: modulation by midazolam. Eur Neuropsychopharmacol. 2010;20(6):388–97.PubMedCrossRefGoogle Scholar
  82. 82.
    Martijena ID, et al. Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse. 2002;45(2):86–94.PubMedCrossRefGoogle Scholar
  83. 83.
    Rodriguez Manzanares PA, et al. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci. 2005;25(38):8725–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature. 2001;411(6835):305–9.PubMedCrossRefGoogle Scholar
  85. 85.
    LaBar KS, et al. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron. 1998;20(5):937–45.PubMedCrossRefGoogle Scholar
  86. 86.
    de Olmos JS, Beltramino CA, Alheid G. Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G, editor. The rat nervous system. San Diego: Academic Press; 2004. p. 509–603.CrossRefGoogle Scholar
  87. 87.
    Sah P, et al. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83(3):803–34.PubMedCrossRefGoogle Scholar
  88. 88.
    Siegel A, Tassoni JP. Differential efferent projections from the ventral and dorsal hippocampus of the cat. Brain Behav Evol. 1971;4(3):185–200.PubMedCrossRefGoogle Scholar
  89. 89.
    Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;172(1):49–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Kjelstrup KG, et al. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A. 2002;99(16):10825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Calfa G, Bussolino D, Molina VA. Involvement of the lateral septum and the ventral Hippocampus in the emotional sequelae induced by social defeat: role of glucocorticoid receptors. Behav Brain Res. 2007;181(1):23–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Maren S, Fanselow MS. Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem. 1997;67(2):142–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Pitkanen A, et al. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci. 2000;911:369–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev. 2003;27(6):555–79.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212(2):149–79.PubMedCrossRefGoogle Scholar
  96. 96.
    Elzinga BM, Bremner JD. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J Affect Disord. 2002;70(1):1–17.PubMedCrossRefGoogle Scholar
  97. 97.
    Bremner JD, et al. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res. 2008;167:171–86.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pole N. The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychol Bull. 2007;133(5):725–46.PubMedCrossRefGoogle Scholar
  99. 99.
    Lonergan MH, et al. Propranolol's effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis. J Psychiatry Neurosci. 2013;38(4):222–31.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gould E, et al. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A. 1998;95(6):3168–71.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Magarinos AM, et al. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16(10):3534–40.PubMedGoogle Scholar
  102. 102.
    Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15(11):7539–47.PubMedGoogle Scholar
  103. 103.
    Sapolsky RM. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress. 1996;1(1):1–19.PubMedCrossRefGoogle Scholar
  104. 104.
    Sapolsky RM, et al. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–902.PubMedGoogle Scholar
  105. 105.
    Milad MR, et al. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 2009;164(3):887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kasai K, et al. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry. 2008;63(6):550–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Rougemont-Bucking A, et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci Ther. 2011;17(4):227–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Liberzon I, et al. Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry. 1999;45(7):817–26.PubMedCrossRefGoogle Scholar
  109. 109.
    McLaughlin KJ, Baran SE, Conrad CD. Chronic stress- and sex-specific neuromorphological and functional changes in limbic structures. Mol Neurobiol. 2009;40(2):166–82.PubMedCrossRefGoogle Scholar
  110. 110.
    Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett. 1993;163(1):109–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Milad MR, et al. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006;73(1):61–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420(6911):70–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Brown SM, Henning S, Wellman CL. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex. 2005;15(11):1714–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Radley JJ, et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2004;125(1):1–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Calfa G, Volosin M, Molina VA. Glucocorticoid receptors in lateral septum are involved in the modulation of the emotional sequelae induced by social defeat. Behav Brain Res. 2006;172(2):​324–32.PubMedCrossRefGoogle Scholar
  116. 116.
    Espejo PJ, et al. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex. Neuropharmacology. 2016;109:349–56.PubMedCrossRefGoogle Scholar
  117. 117.
    Bustos SG, et al. Previous stress attenuates the susceptibility to Midazolam's disruptive effect on fear memory reconsolidation: influence of pre-reactivation D-cycloserine administration. Neuropsychopharmacology. 2010;35(5):1097–108.PubMedCrossRefGoogle Scholar
  118. 118.
    Nader K. Emotional memory. Handb Exp Pharmacol. 2015;228:249–70.PubMedCrossRefGoogle Scholar
  119. 119.
    Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298(14):1685–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Hermans D, et al. Extinction in human fear conditioning. Biol Psychiatry. 2006;60(4):361–8.PubMedCrossRefGoogle Scholar
  121. 121.
    McNally RJ. Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders. Clin Psychol Rev. 2007;27(6):750–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Hamm AO. Specific phobias. Psychiatr Clin North Am. 2009;32(3):577–91.PubMedCrossRefGoogle Scholar
  123. 123.
    Eysenck HJ. Behavioral therapy and the philosophers. Behav Res Ther. 1979;17(5):511–4.PubMedCrossRefGoogle Scholar
  124. 124.
    Davis M, Falls WA, Gewirtz J. Neural systems involved in fear inhibition: extinction and conditioned inhibition. In: Weiner I, Myslobodsky M, editors. Contemporary issues in modeling psychopathology. Boston: Kluwer Academic; 2000. p. 113–42.Google Scholar
  125. 125.
    Shin LM, et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry. 2001;50(12):932–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Milad MR, et al. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci U S A. 2005;102(30):10706–11.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gray EG. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature. 1959;183(4675):1592–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313–53.PubMedCrossRefGoogle Scholar
  129. 129.
    Harris KM. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol. 1999;9(3):​343–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Kennedy MB. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 1997;20(6):264–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Bailey CH, Kandel ER. Structural changes accompanying memory storage. Annu Rev Physiol. 1993;55:397–426.PubMedCrossRefGoogle Scholar
  132. 132.
    Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci. 2000;3(7):653–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Segal I, Korkotian I, Murphy DD. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci. 2000;23(2):53–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Matsuzaki M, et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci. 2001;4(11):1086–92.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Takumi Y, et al. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999;2(7):618–24.PubMedCrossRefGoogle Scholar
  136. 136.
    Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80(3):704–17.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Weiler IJ, Hawrylak N, Greenough WT. Morphogenesis in memory formation: synaptic and cellular mechanisms. Behav Brain Res. 1995;66(1–2):1–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Nikonenko I, et al. Activity-induced changes of spine morphology. Hippocampus. 2002;12(5):585–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Solomon PR, et al. Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response. Behav Neurosci. 1986;100(5):729–44.PubMedCrossRefGoogle Scholar
  140. 140.
    Geinisman Y, et al. Associative learning elicits the formation of multiple-synapse boutons. J Neurosci. 2001;21(15):5568–73.PubMedGoogle Scholar
  141. 141.
    Leuner B, Falduto J, Shors TJ. Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci. 2003;23(2):659–65.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Kleim JA, et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 2002;77(1):63–77.PubMedCrossRefGoogle Scholar
  143. 143.
    Knafo S, et al. Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur J Neurosci. 2001;13(3):633–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Frankland PW, et al. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004;304(5672):881–3.PubMedCrossRefGoogle Scholar
  145. 145.
    Vetere G, et al. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci U S A. 2011;108(20):8456–60.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Restivo L, et al. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci. 2009;29(25):8206–14.PubMedCrossRefGoogle Scholar
  147. 147.
    Heinrichs SC, et al. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice. Behav Brain Res. 2013;248:80–4.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588(2):341–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Sousa N, et al. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97(2):253–66.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen Y, et al. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci. 2008;28(11):2903–11.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Liston C, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26(30):7870–4.PubMedCrossRefGoogle Scholar
  152. 152.
    Shansky RM, et al. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex. 2009;19(10):2479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Shansky RM, Morrison JH. Stress-induced dendritic remodeling in the medial prefrontal cortex: effects of circuit, hormones and rest. Brain Res. 2009;1293:108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Radley JJ, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20.PubMedCrossRefGoogle Scholar
  155. 155.
    Vyas A, et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22(15):​6810–8.PubMedGoogle Scholar
  156. 156.
    Suvrathan A, et al. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1633):20130151.CrossRefGoogle Scholar
  157. 157.
    Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10(6):423–33.PubMedCrossRefGoogle Scholar
  158. 158.
    Shors TJ, Weiss C, Thompson RF. Stress-induced facilitation of classical conditioning. Science. 1992;257(5069):537–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Cordero MI, et al. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Horm Behav. 2003;44(4):338–45.PubMedCrossRefGoogle Scholar
  160. 160.
    Maldonado NM, et al. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment. Eur Neuropsychopharmacol. 2014;24(2):262–70.PubMedCrossRefGoogle Scholar
  161. 161.
    Maldonado NM, Martijena ID, Molina VA. Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment. Behav Brain Res. 2011;225(1):77–84.PubMedCrossRefGoogle Scholar
  162. 162.
    Giachero M, Calfa GD, Molina VA. Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning. Learn Mem. 2013;20(11):611–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gastón Diego Calfa
    • 1
  • Marcelo Giachero
    • 2
  • Víctor Alejandro Molina
    • 1
  1. 1.IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Laboratory of Behavioral NeurobiologyCenter of Biological Sciences, Federal University of Santa CatarinaFlorianopolisBrazil

Personalised recommendations