Habit Learning and Addiction

  • Enrico Patrono
  • Hisao Nishijo
  • Antonella Gasbarri
  • Assunta Pompili
  • Carlos Tomaz
Chapter

Abstract

Drug addiction is a chronic compulsion and relapsing disorder defined as a “pathological pattern of use of a substance”, and characterized by the loss of control in drug-taking-related behaviors, the pursuance of those behaviors even in the presence of negative consequences, and a strongly motivated desire to consume substances. Several brain areas and circuits are involved, encoding cognitive functions such as reward, motivation, and memory. Addiction research has moved the focus to those psycho-neurobiological mechanisms that have a crucial role on the transition from an occasional use to the abuse of drugs. It has been hypothesized that drug addiction may start as a “goal-directed behavior”; later, with the maintenance of the “instrumental behavior”, it can turn into a “habitual behavior”, inducing a form of habit-based learning. At a brain level, it has been suggested that DA-ergic/GLU-ergic/NE-ergic meso-cortico-limbic transmission may have a crucial role in the pathological habit-based learning of a drug-seeking behavior.

The present chapter reviews the more recent studies on drug addiction, investigating the psycho-neurobiological hypotheses concerning what drives the transition from an occasional use to abuse of drugs. Then, a “habit learning” theory of drug addiction is described. Further, the possibility of an engagement of different memory systems in a “learned drug-seeking” behavior is discussed. The next section describes the role of prefrontal NE-ergic neurotransmission in drug addiction. Finally, the chapter raises some questions about a conceptual framework linking pathological learning with memory and drug addiction.

Keywords

Drug addiction Habit-learning Habit-memory Mesocorticolimbic reward system 

References

  1. 1.
    United Nations Office on Drug and Crime. World drug report 2014. Vienna: United Nations Publications; 2014.Google Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  3. 3.
    Nestler EJ. Molecular mechanisms of opiate and cocaine addiction. Curr Opin Neurobiol. 1997;7(5):​713–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Koob GF, LeMoal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Berridge KC. Motivational concepts in behavioral neuroscience. Physiol Behav. 2004;81(2):179–209.PubMedCrossRefGoogle Scholar
  6. 6.
    Robbins TW, Everitt BJ, Nutt DJ. Introduction: the neurobiology of drug addiction: new vistas. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3109–11. doi: 10.1098/rstb.2008.0108.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Darracq L, Blanc G, Glowinski J, Tassin JP. Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci. 1998;18(7):2729–39.PubMedGoogle Scholar
  8. 8.
    Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S. Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci. 2003;23(5):​1879–85.PubMedGoogle Scholar
  9. 9.
    Ventura R, Alcaro A, Puglisi-Allegra S. Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex. 2005;15(12):1877–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Ventura R, Morrone C, Puglisi-Allegra S. Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci U S A. 2007;104(12):5181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Latagliata EC, Patrono E, Puglisi-Allegra S, Ventura R. Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci. 2010;11:15. doi: 10.1186/1471-2202-11-15.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Adams E, Klug J, Quast M, Stairs DJ. Effects of environmental enrichment on nicotine-induced sensitization and cross-sensitization to d-amphetamine in rats. Drug Alcohol Depend. 2013;129(3):247–53. doi: 10.1016/j.drugalcdep.2013.02.019.PubMedCrossRefGoogle Scholar
  14. 14.
    Harb MR, Almeida OFX. Pavlovian conditioning and cross-sensitization studies raise challenges to the hypothesis that overeating is an addictive behavior. Transl Psychiatry. 2014;4:e387. doi: 10.1038/tp.2014.28.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Koob GF. Animal models of craving for ethanol. Addiction. 2000;95(Suppl 2):S73–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav. 104(1):149–56. doi: 10.1016/j.physbeh.2011.04.063.
  18. 18.
    Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi: 10.1038/npp.2009.110.PubMedCrossRefGoogle Scholar
  19. 19.
    Piazza PV, Deroche-Gamonet V. A multistep general theory of transition to addiction. Psychopharmacology (Berl). 2013;229(3):387–413. doi: 10.1007/s00213-013-3224-4.CrossRefGoogle Scholar
  20. 20.
    Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci. 2005;8(5):​555–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200. doi: 10.1098/rstb.2008.0107.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37–46. doi: 10.1016/j.tics.2010.11.001.PubMedCrossRefGoogle Scholar
  23. 23.
    Di Chiara G, Imperato A. Drugs abused by humans preferntially increase synaptic dopamine concentrations in the mesolimbico system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):​5274–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225.PubMedCrossRefGoogle Scholar
  25. 25.
    Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine and amphetaemine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A. 1995;92(26):​12304–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34. doi: 10.1016/j.neuron.2008.06.012.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Singh T, McDannald MA, Haney RZ, Cerri DH, Schoenbaum G. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on pavlovian conditioned responding. Front Integr Neurosci. 2010;4:126. doi: 10.3389/fnint.2010.00126.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9:90. doi: 10.3389/fnsys.2015.00090.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Peciňa S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12(6):500–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Puglisi-Allegra S, Ventura R. Prefrontal/accumbal cathecolamine system processes high motivational salience. Front Behav Neurosci. 2012;6:31. doi: 10.3389/fnbeh.2012.00031.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes (Lond). 2009;33(Suppl 2):S18–24. doi: 10.1038/ijo.2009.67.CrossRefGoogle Scholar
  32. 32.
    Jay TM. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol. 2003;69(6):375–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.PubMedGoogle Scholar
  34. 34.
    Torregrosa MM, Gordon J, Taylor JR. Double dissociation between the anterior cingulate cortex and nucleus accumbens core in encoding the context versus the content of pavlovian cocaine cue extinction. J Neurosci. 2013;33(19):8370–7. doi: 10.1523/JNEUROSCI.0489-13.2013.CrossRefGoogle Scholar
  35. 35.
    Saddoris MP, Carelli RM. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning. Biol Psychiatry. 2014;75(2):156–64. doi: 10.1016/j.biopsych.2013.07.037.PubMedCrossRefGoogle Scholar
  36. 36.
    Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.PubMedGoogle Scholar
  38. 38.
    Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Berke JD. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur J Neurosci. 2009;30(5):848–59. doi: 10.1111/j.1460-9568.2009.06843.x.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ren X, Ferreira JG, Zhou L, Shammah-Lagnado SJ, Jeckel CW, de Araujo IE. Nutrient selection in the absence of taste receptor signaling. J Neurosci. 2010;30(23):8012–23. doi: 10.1523/JNEUROSCI.​5749-09.2010.
  41. 41.
    Wiltschko AB, Pettibone JR, Berke JD. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons. Neuropsychopharmacology. 2010;35(6):1261–70. doi: 10.1038/npp.2009.226.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci. 1999;877:140–56.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumoto J, Urakawa S, Hori E, de Araujo MF, Sakuma Y, Ono T, et al. Neuronal responses in the nucleus accumbens shell during sexual behavior in male rats. J Neurosci. 2012;32(5):1672–86. doi: 10.1523/JNEUROSCI.5140-11.2012.PubMedCrossRefGoogle Scholar
  44. 44.
    Tepper JM, Plenz D. Microcircuits in the striatum: striatal cell types and their interaction. In: Grillner S, Graybiel AM, editors. Microcircuits: the interface between neurons and global brain function. Cambridge: MIT; 2006. p. 127–48.Google Scholar
  45. 45.
    Lansink CS, Goltstein PM, Lankelma JV, Pennartz CM. Fast-spiking interneurons of the rat ventral striatum: temporal coordination of activity with principal cells and responsiveness to reward. Eur J Neurosci. 2010;32(3):494–508. doi: 10.1111/​j.1460-9568.2010.07293.x.
  46. 46.
    Cacciapaglia F, Wightman RM, Carelli RM. Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. J Neurosci. 2011;31(39):​13860–9. doi: 10.1523/JNEUROSCI.1340-11.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nishijo H, Uwano T, Ono T. Representation of taste stimuli in the brain. Chem Senses. 2005;30(Suppl 1):i174–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimura T, Imaoka H, Okazaki Y, Kanamori Y, Fushiki T, Yamamoto T. Involvement of the mesolimbic system in palatability-induced ingestion. Chem Senses. 2005;30(Suppl 1):i188–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Alderson HL, Robbins TW, Everitt BJ. Heroin self-administration under a second-order schedule of reinforcement: acquisition and maintenance of heroin-seeking behaviour in rats. Psychopharmacology (Berl). 2000;153(1):120–33.CrossRefGoogle Scholar
  51. 51.
    Arroyo M, Markou A, Robbins TW, Everitt BJ. Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology (Berl). 1998;140(3):​331–44.CrossRefGoogle Scholar
  52. 52.
    Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev. 2001;36(2-3):129–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Gasbarri A, Pompili A, Packard MG, Tomaz C. Habit learning and memory in mammals: behavioral and neural characteristics. Neurobiol Learn Mem. 2014;114:198–208. doi: 10.1016/j.nlm.2014.​06.010.
  54. 54.
    Dickinson A, Smith S, Mirenowicz J. Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci. 2000;114(3):468–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–52.PubMedCrossRefGoogle Scholar
  56. 56.
    Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity and top-down cognitive control. Neuron. 2011;69(4):680–94. doi: 10.1016/j.neuron.2011.01.020.PubMedCrossRefGoogle Scholar
  57. 57.
    Parkinson JA, Cardinal RN, Everitt BJ. Limbic cortical–ventral striatal systems underlying appetitive conditioning. Prog Brain Res. 2000;126:263–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Di Ciano P, Everitt BJ. Direct interactions between basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci. 2004;24(32):7167–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Corbit LH, Balleine BW. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci. 2005;25(4):962–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.PubMedCrossRefGoogle Scholar
  61. 61.
    Tomaz C, Dickinson-Anson H, McGaugh JL. Basolateral amygdala lesions block diazepam-induced anterograde amnesia in an inhibitory avoidance task. Proc Natl Acad Sci U S A. 1992;89(8):3615–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tomaz C, Dickinson-Anson H, McGaugh JL, Souza-Silva MA, Viana MB, Graeff EG. Localization in the amygdala of the amnestic action of diazepam on emotional memory. Behav Brain Res. 1993;58(1-2):99–105.PubMedCrossRefGoogle Scholar
  63. 63.
    Milton AL, Lee JL, Everitt BJ. Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on β-adrenergic receptors. Learn Mem. 2008;15(2):88–92. doi: 10.1101/lm.825008.PubMedCrossRefGoogle Scholar
  64. 64.
    Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439(7078):865–70.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    See RE, Kruzich PJ, Grimm JW. Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology (Berl). 2001;154(3):301–10.CrossRefGoogle Scholar
  66. 66.
    Di Ciano P, Everitt BJ. Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology. 2001;25(3):341–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Neisewander JL, O’Dell LE, Tran-Nguyen LT, Castaňeda E, Fuchs RA. Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology. 1996;15(5):506–14.PubMedCrossRefGoogle Scholar
  68. 68.
    McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci. 2004;24(7):1551–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Parsegian A, See RE. Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats. Neuropsychopharmacology. 2014;39(4):811–22. doi: 10.1038/npp.2013.231.PubMedCrossRefGoogle Scholar
  70. 70.
    Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol. 2013;23(4):564–72. doi: 10.1016/j.conb.2013.01.025.PubMedCrossRefGoogle Scholar
  71. 71.
    Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10(3):295–307.PubMedCrossRefGoogle Scholar
  72. 72.
    Belin D, Everitt BJ. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron. 2008;57(3):432–41. doi: 10.1016/j.neuron.2007.12.019.PubMedCrossRefGoogle Scholar
  73. 73.
    Faure A, Haberland U, Conde F, El Massioui N. Lesion to the nigrostriatal dopamine system disrupts stimulus–response habit formation. J Neurosci. 2005;25(11):2771–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Yin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci. 2004;19(1):181–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci. 2005;22(2):513–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Koob GF. Brain stress systems in the amygdala and addiction. Brain Res. 2009;1293:61–75. doi: 10.1016/j.brainres.2009.03.038.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Koob GF. Addiction is a reward deficit and stress surfeit disorder. Front Psych. 2013;4:72. doi: 10.3389/fpsyt.2013.00072.Google Scholar
  78. 78.
    Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, et al. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013;496(7444):224–8. doi: 10.1038/nature12041.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: implications for addiction-related behaviors. Neuropharmacology. 2014;76Pt B:320–8. doi: 10.1016/j.neuropharm.2013.05.046.CrossRefGoogle Scholar
  80. 80.
    Gabriele A, Packard MG. Evidence of a role for multiple memory systems in behavioral extinction. Neurobiol Learn Mem. 2006;85(3):289–99.PubMedCrossRefGoogle Scholar
  81. 81.
    Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563–93.PubMedCrossRefGoogle Scholar
  82. 82.
    White NM, McDonald RJ. Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem. 2002;77(2):125–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Gabriele A, Setlow B, Packard MG. Cocaine self-administration alters the relative effectiveness of multiple memory systems during extinction. Learn Mem. 2009;16(5):296–9. doi: 10.1101/lm.1253409.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tiffany ST. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev. 1990;97(2):147–68.PubMedCrossRefGoogle Scholar
  86. 86.
    Packard MG. Glutamate infused posttraining into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proc Natl Acad Sci U S A. 1999;96(22):12881–6.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci. 2004;24(14):3554–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6(1):13–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Charney DS. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand Suppl. 2003;417:38–50.CrossRefGoogle Scholar
  90. 90.
    Packard MG, Cahill L, McGaugh JL. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc Natl Acad Sci U S A. 1994;91(18):8477–81.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Packard MG, Teather LA. Amygdala modulation of multiple memory systems: hippocampus and caudate–putamen. Neurobiol Learn Mem. 1998;69(2):163–203.PubMedCrossRefGoogle Scholar
  92. 92.
    McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1–28.PubMedCrossRefGoogle Scholar
  93. 93.
    Packard MG, Wingard JC. Amygdala and “emotional” modulation of the relative use of multiple memory systems. Neurobiol Learn Mem. 2004;82(3):243–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Wingard JC, Packard MG. The amygdala and emotional modulation of competition between cognitive and habit memory. Behav Brain Res. 2008;193(1):126–31. doi: 10.1016/j.bbr.2008.05.002.PubMedCrossRefGoogle Scholar
  95. 95.
    Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci. 2000;911:369–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Jolkonnen E, Pikkarainen M, Kemppainen S, Pitkänen A. Interconnectivity between the amygdaloid complex and the amygdalostriatal transition area: a PHA-L study in rat. J Comp Neurol. 2001;431(1):39–58.CrossRefGoogle Scholar
  97. 97.
    Packard MG, McGaugh JL. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem. 1996;65(1):65–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Poldrack RA, Packard MG. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia. 2003;41(3):245–51.PubMedCrossRefGoogle Scholar
  99. 99.
    Gold PE. Coordination of multiple memory systems. Neurobiol Learn Mem. 2004;82(3):230–42.PubMedCrossRefGoogle Scholar
  100. 100.
    McDonald RJ, Hong NS, Devan BD. The challenges of understanding mammalian cognition and memory-based behaviours: an interactive learning and memory systems approach. Neurosci Biobehav Rev. 2004;28(7):719–45.PubMedCrossRefGoogle Scholar
  101. 101.
    Lang PJ, Davis M, Ohman A. Fear and anxiety: animal models and human cognitive psychophysiology. J Affect Disord. 2000;61(3):137–59.PubMedCrossRefGoogle Scholar
  102. 102.
    LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.PubMedCrossRefGoogle Scholar
  103. 103.
    McIntyre CK, Power AE, Roozendaal B, McGaugh JL. Role of the baso-lateral amygdala in memory consolidation. Ann N Y Acad Sci. 2003;985:273–93.PubMedCrossRefGoogle Scholar
  104. 104.
    Roozendaal B, McEwen BS, Chattarij S. Stress, memory and the amydgala. Nat Rev Neurosci. 2009;10(6):423–33. doi: 10.1038/nrn2651.PubMedCrossRefGoogle Scholar
  105. 105.
    Sun W, Rebec GV. Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci. 2006;26(30):8004–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Ary AW, Lominac KD, Wroten MG, Williams AR, Campbell RR, Ben-Shahar O, et al. Imbalances in prefrontal cortex CC-Homer1 versus CC-Homer2 expression promote cocaine preference. J Neurosci. 2013;33(19):8101–13. doi: 10.1523/JNEUROSCI.1727-12.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mahler SV, Berridge KC. What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology (Berl). 2012;221(3):407–26. doi: 10.1007/s00213-011-2588-6.CrossRefGoogle Scholar
  108. 108.
    Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S. Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology. 2004;29(1):72–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Zocchi A, Orsini C, Cabib S, Puglisi-Allegra S. Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: an in vivo study in mice. Neuroscience. 1998;82(2):521–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Cabib S, Orsini C, Le Moal M, Piazza PV. Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science. 2000;289(5478):463–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Di Segni M, Patrono E, Patella L, Puglisi-Allegra S, Ventura R. Animal models of compulsive eating behavior. Nutrients. 2014;6(10):4591–609. doi: 10.3390/nu6104591.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Patrono E, Di Segni M, Patella L, Andolina D, Valzania A, Latagliata EC, et al. When chocolate seeking becomes compulsion: gene–environment interplay. PLoS One. 2015;10(3):e0120191. doi: 10.1371/journal.pone.0120191.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tassin JP. Norepinephrine–dopamine interactions in the prefrontal cortex and the ventral tegmental area: relevance to mental diseases. Adv Pharmacol. 1998;42:712–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Feenstra MG, Botterblom MH, Mastenbroek S. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience. 2000;100(4):741–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28(7):771–84.PubMedCrossRefGoogle Scholar
  116. 116.
    Mingote S, de Bruin JP, Feenstra MG. Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci. 2004;24(10):2475–80.PubMedCrossRefGoogle Scholar
  117. 117.
    Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.PubMedCrossRefGoogle Scholar
  118. 118.
    Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009;32:267–87. doi: 10.1146/annurev.neuro.051508.135535.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Page ME, Lucki I. Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology. 2002;27(2):237–47.PubMedCrossRefGoogle Scholar
  120. 120.
    van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG. Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex. 2007;17(6):1444–53.PubMedCrossRefGoogle Scholar
  121. 121.
    Nicniocaill B, Gratton A. Medial prefrontal cortical alpha1 adrenoreceptor modulation of the nucleus accumbens dopamine response to stress in Long–Evans rats. Psychopharmacology (Berl). 2007;191(3):835–42.CrossRefGoogle Scholar
  122. 122.
    Mitrano DA, Schroeder JP, Smith Y, Cortright JJ, Bubula N, Vezina P, et al. α-1 Adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology. 2012;37(9):​2161–72. doi: 10.1038/npp.2012.68.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Devoto P, Flore G, Pira L, Diana M, Gessa GL. Co-release of noradrenaline and dopamine in the prefrontal cortex after acute morphine and during morphine withdrawal. Psychopharmacology (Berl). 2002;160(2):220–4.CrossRefGoogle Scholar
  124. 124.
    Greba Q, Gifkins A, Kokkinidis L. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res. 2001;899(1-2):218–26.PubMedCrossRefGoogle Scholar
  125. 125.
    Guarraci FA, Frohardt RJ, Young SL, Kapp BS. A functional role for dopamine transmission in the amygdala during conditioned fear. Ann N Y Acad Sci. 1999;877:732–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Rosenkranz JA, Grace AA. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci. 2002;22(1):324–37.PubMedGoogle Scholar
  127. 127.
    Stevenson CW, Gratton A. Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. Eur J Neurosci. 2003;17(6):1287–95.PubMedCrossRefGoogle Scholar
  128. 128.
    Floresco SB, Tse MT. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala–prefrontal cortical pathway. J Neurosci. 2007;27(8):2045–57.PubMedCrossRefGoogle Scholar
  129. 129.
    Ito R, Canseliet M. Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning. Neuropsychopharmacology. 2010;35(7):1440–52. doi: 10.1038/npp.2010.14.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Läck AK, Diaz MR, Chappell A, DuBois DW, McCool BA. Chronic ethanol and withdrawal differetially modulate pre- and post-synaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol. 2007;98(6):3185–96.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct. 2008;213(1-2):43–61. doi: 10.1007/s00429-008-0191-3.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Barros M, Giorgetti M, Souto AA, Vilela G, Santos K, Boas NV, et al. Persistent anxiety-like behavior in marmosets following a recent predatory stress condition: reversal by diazepam. Pharmacol Biochem Behav. 2007;86(4):705–11.PubMedCrossRefGoogle Scholar
  133. 133.
    Barros M, Maior RS, Houston JP, Tomaz C. Predatory stress as an experimental strategy to measure fear and anxiety-related behaviors in non-human primates. Rev Neurosci. 2008;19(2-3):157–69.PubMedCrossRefGoogle Scholar
  134. 134.
    Brady KT, Sinha R. Co-occurring mental and substance use disorders: the neurobiological effects of chronic stress. Am J Psychiatry. 2005;162(8):​1483–93.PubMedCrossRefGoogle Scholar
  135. 135.
    Dumont EC, Williams JT. Noradrenaline triggers GABAA inhibition of bed nucleus of the stria terminalis neurons projecting to the ventral tegmental area. J Neurosci. 2004;24(38):8198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gilpin NW, Koob GF. Effects of β-adrenoceptor antagonists on alcohol drinking by alcohol-dependent rats. Psychopharmacology (Berl). 2010;212(3):431–9. doi: 10.1007/s00213-010-1967-8.CrossRefGoogle Scholar
  137. 137.
    Bermudez MA, Schultz W. Timing in reward and decision processes. Philos Trans R Soc Lond B Biol Sci. 2014;369(1637):20120468. doi: 10.1098/rstb.2012.0468.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bermudez MA, Göbel C, Schultz W. Sensitivity to temporal structure in amygdala neurons. Curr Biol. 2012;22(19):1839–44. doi: 10.1016/j.cub.2012.07.062.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Enrico Patrono
    • 1
  • Hisao Nishijo
    • 1
  • Antonella Gasbarri
    • 2
  • Assunta Pompili
    • 2
  • Carlos Tomaz
    • 3
  1. 1.System Emotional Science, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  2. 2.Department of Applied Clinical Science and BiotechnologyUniversity of L’Aquila, CoppitoL’AquilaItaly
  3. 3.Neuroscience Research GroupCEUMA University, UNICEUMASão LuisBrazil

Personalised recommendations