Skip to main content

The Extent of Neuroadaptive Responses to Psychostimulants: Focus on Brain Angiotensin System

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update - Vol. II

Abstract

Amphetamine and cocaine are drugs of abuse worldwide consumed for their stimulant properties in the central nervous system. They mainly potentiate noradrenergic and dopaminergic neurotransmission and induce long-term changes in multiple neuronal circuits, modifying the future responses to pharmacological or non-pharmacological challenges. The altered neuronal connectivity induced by psychostimulants has long been studied in reward processing brain areas and in behavioral responses. Different neurotransmitter systems are involved in these responses, including the neuropeptide angiotensin II. Locally produced brain angiotensin II, acting through AT1 receptors, plays an important role in the modulation of central dopaminergic neurotransmission. Dopamine-innervated areas such as caudate putamen, nucleus accumbens, substantia nigra, hypothalamus, and ventral pallidum express high AT1 receptor density. Our recent studies show the role of angiotensin II AT1 receptors in the development of neuroadaptative behavioral and neurochemical changes induced by amphetamine. Moreover, we found alterations in the components of the renin angiotensin system (RAS) and in the functionality of AT1 receptors after amphetamine exposure. The evidence presented in this chapter highlight the RAS as a neuromodulatory system of superior brain activities, and further validate Angiotensin II involvement in amphetamine-induced alterations through AT1 receptor activation. The AT1 receptor blockers are currently and safely used in clinic for different pathologies, so they would be prominent candidates for pharmacological treatment in pathologies related to altered dopamine neurotransmission, such as drug addiction, schizophrenia, or even depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angrist B, Corwin J, Bartlik B, Cooper T. Early pharmacokinetics and clinical effects of oral D-amphetamine in normal subjects. Biol Psychiatry. 1987;22(11):1357–68.

    Article  CAS  PubMed  Google Scholar 

  2. Sherer MA. Intravenous cocaine: psychiatric effects, biological mechanisms. Biol Psychiatry. 1988;24(8):865–85.

    Article  CAS  PubMed  Google Scholar 

  3. Lieberman JA, Kinon BJ, Loebel AD. Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull. 1990;16(1):97–110.

    Article  CAS  PubMed  Google Scholar 

  4. Klawans HL, Margolin DI. Amphetamine-induced dopaminergic hypersensitivity in guinea pigs. Implications in psychosis and human movement disorders. Arch Gen Psychiatry. 1975;32(6):725–32.

    Article  CAS  PubMed  Google Scholar 

  5. Dackis C, Gold MS. Neurotransmitter and neuroendocrine abnormalities associated with cocaine use. Psychiatr Med. 1985;3(4):461–83.

    CAS  PubMed  Google Scholar 

  6. Antelman SM, Chiodo LA. Dopamine autoreceptor subsensitivity: a mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biol Psychiatry. 1981;16(8):717–27.

    CAS  PubMed  Google Scholar 

  7. Kalivas PW, Pierce RC, Cornish J, Sorg BA. A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol. 1998;12(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  8. Stewart J, Badiani A. Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol. 1993;4(4):289–312.

    CAS  PubMed  Google Scholar 

  9. Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev. 1997;25(2):192–216.

    Article  CAS  PubMed  Google Scholar 

  10. Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN. A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci. 1999;19(21):9579–86.

    CAS  PubMed  Google Scholar 

  11. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology Off Publ Am Col Neuropsychopharmacology. 2010;35(2):401–15.

    Article  CAS  Google Scholar 

  12. Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000;151(2–3):99–120.

    Article  CAS  Google Scholar 

  13. Vezina P. D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J Neurosci. 1996;16(7):2411–20.

    CAS  PubMed  Google Scholar 

  14. Prasad BM, Hochstatter T, Sorg BA. Expression of cocaine sensitization: regulation by the medial prefrontal cortex. Neuroscience. 1999;88(3):765–74.

    Article  CAS  PubMed  Google Scholar 

  15. Sorg BA, Kalivas PW. Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex. Neuroscience. 1993;53(3):695–703.

    Article  CAS  PubMed  Google Scholar 

  16. Sorg BA, Davidson DL, Kalivas PW, Prasad BM. Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J Pharmacol Exp Ther. 1997;281(1):54–61.

    CAS  PubMed  Google Scholar 

  17. Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience. 1998;82(4):1103–14.

    Article  CAS  PubMed  Google Scholar 

  18. Tzschentke TM, Schmidt WJ. The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of the prelimbic medial prefrontal cortex. Brain Res. 1998;795(1–2):71–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. Eur J Pharmacol. 1999;372(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  20. Richard ML, Liskow BI, Perry PJ. Recent psychostimulant use in hospitalized schizophrenics. J Clin Psychiatry. 1985;46(3):79–83.

    CAS  PubMed  Google Scholar 

  21. Lippoldt A, Paul M, Fuxe K, Ganten D. The brain renin–angiotensin system: molecular mechanisms of cell to cell interactions. Clin Exp Hypertens. 1995;17(1–2):251–66.

    Article  CAS  PubMed  Google Scholar 

  22. Steckelings UM, Bottari SP, Unger T. Angiotensin receptor subtypes in the brain. Trends Pharmacol Sci. 1992;13(9):365–8.

    Article  CAS  PubMed  Google Scholar 

  23. Steele MK, Stephenson KN, Meredith JM, Levine JE. Effects of angiotensin II on LHRH release, as measured by in vivo microdialysis of the anterior pituitary gland of conscious female rats. Neuroendocrinology. 1992;55(3):276–81.

    Article  CAS  PubMed  Google Scholar 

  24. Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Anxiolytic-like action of DuP753, a non-peptide angiotensin II receptor antagonist. Neuroreport. 1990;1(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser FC, Palmer GC, Wallace AV, Carr RD, Fraser-Rae L, Hallam C. Antianxiety properties of the angiotensin II antagonist, DUP 753, in the rat using the elevated plus-maze. Neuroreport. 1992;3(10):922–4.

    Article  CAS  PubMed  Google Scholar 

  26. Georgiev V, Tanaka M, Tsuda A, Koga C, Takeda S, Yokoo H, et al. Effects of angiotensin II on regional brain noradrenaline metabolism in non-stressed and stressed rats. Kurume Med J. 1992;39(4):235–44.

    Article  CAS  PubMed  Google Scholar 

  27. Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Cognitive enhancing actions of PD123177 detected in a mouse habituation paradigm. Neuroreport. 1991;2(6):351–3.

    Article  CAS  PubMed  Google Scholar 

  28. Barnes JM, Barnes NM, Costall B, Coughlan J, Kelly ME, Naylor RJ, et al. Angiotensin-converting enzyme inhibition, angiotensin, and cognition. J Cardiovasc Pharmacol. 1992;19(Suppl 6):S63–71.

    Article  CAS  PubMed  Google Scholar 

  29. Dennes RP, Barnes JC. Attenuation of scopolamine-induced spatial memory deficits in the rat by cholinomimetic and non-cholinomimetic drugs using a novel task in the 12-arm radial maze. Psychopharmacology (Berl). 1993;111(4):435–41.

    Article  CAS  Google Scholar 

  30. Wayner MJ, Armstrong DL, Polan-Curtain JL, Denny JB. Role of angiotensin II and AT1 receptors in hippocampal LTP. Pharmacol Biochem Behav. 1993;45(2):455–64.

    Article  CAS  PubMed  Google Scholar 

  31. Georgiev V, Kambourova T. Behavioural effects of angiotensin II in the mouse following MPTP administration. Gen Pharmacol. 1991;22(4):625–30.

    Article  CAS  PubMed  Google Scholar 

  32. Banks RJ, Mozley L, Dourish CT. The angiotensin converting enzyme inhibitors captopril and enalapril inhibit apomorphine-induced oral stereotypy in the rat. Neuroscience. 1994;58(4):799–805.

    Article  CAS  PubMed  Google Scholar 

  33. Georgiev V, Getova D, Opitz M. Mechanisms of the angiotensin II effects on exploratory behavior of rats in open field. III. Modulatory role of GABA. Methods Find Exp Clin Pharmacol. 1991;13(1):5–9.

    CAS  PubMed  Google Scholar 

  34. Wong PC, Duncia JV, Santella 3rd JB, Smith RD, Wexler RR, Timmermans PB, et al. EXP597, a nonpeptide angiotensin II receptor antagonist with high affinities for the angiotensin AT1 and AT2 receptor subtypes. Eur J Pharmacol. 1994;260(2–3):261–4.

    Article  CAS  PubMed  Google Scholar 

  35. Inagami T, Iwai N, Sasaki K, Yamano Y, Bardhan S, Chaki S, et al. Cloning, expression and regulation of angiotensin II receptors. Eur Heart J. 1994;15(Suppl D):104–7.

    Article  CAS  PubMed  Google Scholar 

  36. Brown L, Sernia C. Angiotensin receptors in cardiovascular diseases. Clin Exp Pharmacol Physiol. 1994;21(10):811–8.

    Article  CAS  PubMed  Google Scholar 

  37. Dzau VJ, Pratt R, Gibbons GH. Angiotensin as local modulating factor in ventricular dysfunction and failure due to coronary artery disease. Drugs. 1994;47(Suppl 4):1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, et al. Angiotensin receptors in the nervous system. Brain Res Bull. 1998;47(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  39. Yang CR, Phillips MI, Renaud LP. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J Physiol. 1992;263(6 Pt 2):R1333–8.

    CAS  PubMed  Google Scholar 

  40. Bai D, Renaud LP. ANG II AT1 receptors induce depolarization and inward current in rat median preoptic neurons in vitro. Am J Physiol. 1998;275(2 Pt 2):R632–9.

    CAS  PubMed  Google Scholar 

  41. Latchford KJ, Ferguson AV. ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R894–902.

    Article  CAS  PubMed  Google Scholar 

  42. Albrecht D, Nitschke T, Von Bohlen Und Halbach O. Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J Off Publ Federation Am Soc Exp Biol. 2000;14(7):925–31.

    CAS  Google Scholar 

  43. Martial FP, Thornton SN, Lienard F, Mousseau MC, Nicolaidis S. Tonic neuronal inhibition by AII revealed by iontophoretic application of Losartan, a specific antagonist of AII type-1 receptors. Brain Res Bull. 1994;34(6):533–9.

    Article  CAS  PubMed  Google Scholar 

  44. Palovcik RA, Phillips MI. Saralasin increases activity of hippocampal neurons inhibited by angiotensin II. Brain Res. 1984;323(2):345–8.

    Article  CAS  PubMed  Google Scholar 

  45. Albrecht D, Broser M, Kruger H. Excitatory action of angiotensins II and IV on hippocampal neuronal activity in urethane anesthetized rats. Regul Pept. 1997;70(2–3):105–9.

    Article  CAS  PubMed  Google Scholar 

  46. Albrecht D, Broser M, Kruger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol. 1997;332(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  47. Xiong HG, Marshall KC. Angiotensin II modulation of glutamate excitation of locus coeruleus neurons. Neurosci Lett. 1990;118(2):261–4.

    Article  CAS  PubMed  Google Scholar 

  48. Merabet L, de Gasparo M, Casanova C. Dose-dependent inhibitory effects of angiotensin II on visual responses of the rat superior colliculus: AT1 and AT2 receptor contributions. Neuropeptides. 1997;31(5):469–81.

    Article  CAS  PubMed  Google Scholar 

  49. Simonnet G, Bioulac B, Rodriguez F, Vincent JD. Evidence of a direct action of angiotensin II on neurones in the septum and in the medial preoptic area. Pharmacol Biochem Behav. 1980;13(3):359–63.

    Article  CAS  PubMed  Google Scholar 

  50. Mooney RD, Zhang Y, Rhoades RW. Effects of angiotensin II on visual neurons in the superficial laminae of the hamster's superior colliculus. Vis Neurosci. 1994;11(6):1163–73.

    Article  CAS  PubMed  Google Scholar 

  51. Cai Y, Bishop VS. Effects of arginine vasopressin and angiotensin II on area postrema neurons in rabbit brain slice preparation. Neurosci Lett. 1995;190(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lin KS, Chan JY, Chan SH. Involvement of AT2 receptors at NRVL in tonic baroreflex suppression by endogenous angiotensins. Am J Physiol. 1997;272(5 Pt 2):H2204–10.

    CAS  PubMed  Google Scholar 

  53. Georgiev V, Gyorgy L, Yonkov D, Getova D, Markovska V, Petkova B. Dopaminergic influence on the effects of angiotensin II in behavioural reactions. Physiol Bohemoslov. 1985;34(Suppl):45–8.

    PubMed  Google Scholar 

  54. Huang BS, Malvin RL. Dopaminergic modulation of some central actions of angiotensin II in vivo. Proc Soc Exp Biol Med Soc Exp Biol Med. 1988;188(4):405–9.

    Article  CAS  Google Scholar 

  55. Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118(2):414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daubert DL, Meadows GG, Wang JH, Sanchez PJ, Speth RC. Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Brain Res. 1999;816(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  57. Hoebel BG, Rada P, Mark GP, Hernandez L. The power of integrative peptides to reinforce behavior by releasing dopamine. Ann N Y Acad Sci. 1994;739:36–41.

    Article  CAS  PubMed  Google Scholar 

  58. Zhuo J, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens. 1998;16(12 Pt 2):2027–37.

    Article  CAS  PubMed  Google Scholar 

  59. Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodriguez-Perez AI. Dopamine–angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease. Mov Disord. 2013;28(10):1337–42.

    Article  CAS  PubMed  Google Scholar 

  60. Labandeira-Garcia JL, Rodriguez-Pallares J, Villar-Cheda B, Rodriguez-Perez AI, Garrido-Gil P, Guerra MJ. Aging, angiotensin system and dopaminergic degeneration in the substantia nigra. Aging Dis. 2011;2(3):257–74.

    PubMed  PubMed Central  Google Scholar 

  61. Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. Eur J Neurosci. 2010;32(10):1695–706.

    Article  PubMed  Google Scholar 

  62. Kloner RA, Hale S, Alker K, Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85(2):407–19.

    Article  CAS  PubMed  Google Scholar 

  63. Billman GE. Cocaine: a review of its toxic actions on cardiac function. Crit Rev Toxicol. 1995;25(2):113–32.

    Article  CAS  PubMed  Google Scholar 

  64. Mouhaffel AH, Madu EC, Satmary WA, Fraker Jr TD. Cardiovascular complications of cocaine. Chest. 1995;107(5):1426–34.

    Article  CAS  PubMed  Google Scholar 

  65. Margolin A, Avants SK, Setaro JF, Rinder HM, Grupp L. Cocaine, HIV, and their cardiovascular effects: is there a role for ACE-inhibitor therapy? Drug Alcohol Depend. 2000;61(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  66. Goeders NE. A neuroendocrine role in cocaine reinforcement. Psychoneuroendocrinology. 1997;22(4):237–59.

    Article  CAS  PubMed  Google Scholar 

  67. DeVries AC, Taymans SE, Sundstrom JM, Pert A. Conditioned release of corticosterone by contextual stimuli associated with cocaine is mediated by corticotropin-releasing factor. Brain Res. 1998;786(1–2):39–46.

    Article  CAS  PubMed  Google Scholar 

  68. Sarnyai Z. Neurobiology of stress and cocaine addiction. Studies on corticotropin-releasing factor in rats, monkeys, and humans. Ann N Y Acad Sci. 1998;851:371–87.

    Article  CAS  PubMed  Google Scholar 

  69. Zacharieva S, Matrozov P, Stoeva I, Andonova K. The effect of angiotensin-converting enzyme inhibition on ACTH response to corticotropin-releasing hormone (CRH) in normal men. Horm Metab Res. 1991;23(5):245–6.

    Google Scholar 

  70. Aguilera G, Kiss A, Luo X. Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol. 1995;7(10):775–83.

    Article  CAS  PubMed  Google Scholar 

  71. Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  72. Dwoskin LP, Jewell AL, Cassis LA. DuP 753, a nonpeptide angiotensin II-1 receptor antagonist, alters dopaminergic function in rat striatum. Naunyn Schmiedebergs Arch Pharmacol. 1992;345(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  73. Braszko JJ. Participation of D 1-4 dopamine receptors in the pro-cognitive effects of angiotensin IV and des-Phe 6 angiotensin IV. Neurosci Biobehav Rev. 2010;34(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  74. Stragier B, Sarre S, Vanderheyden P, Vauquelin G, Fournie-Zaluski MC, Ebinger G, et al. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem. 2004;90(5):1251–7.

    Article  CAS  PubMed  Google Scholar 

  75. Aguilera G, Young WS, Kiss A, Bathia A. Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology. 1995;61(4):437–44.

    Article  CAS  PubMed  Google Scholar 

  76. DeVries AC, Pert A. Conditioned increases in anxiogenic-like behavior following exposure to contextual stimuli associated with cocaine are mediated by corticotropin-releasing factor. Psychopharmacology (Berl). 1998;137(4):333–40.

    Article  CAS  Google Scholar 

  77. Jenkins TA, Mendelsohn FA, Chai SY. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997;68(3):1304–11.

    Article  CAS  PubMed  Google Scholar 

  78. Acerbo MJ, Johnson AK. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior. Pharmacol Biochem Behav. 2011;98(3):440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watanabe MA, Kucenas S, Bowman TA, Ruhlman M, Knuepfer MM. Angiotensin II and CRF receptors in the central nucleus of the amygdala mediate hemodynamic response variability to cocaine in conscious rats. Brain Res. 2010;1309:53–65.

    Article  CAS  PubMed  Google Scholar 

  80. von Bohlen und Halbach O, Albrecht D. Visualization of specific angiotensin II binding sites in the rat limbic system. Neuropeptides. 1998;32(3):241–5.

    Article  Google Scholar 

  81. Sakanaka M, Shibasaki T, Lederis K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res. 1986;382(2):213–38.

    Article  CAS  PubMed  Google Scholar 

  82. Uryu K, Okumura T, Shibasaki T, Sakanaka M. Fine structure and possible origins of nerve fibers with corticotropin-releasing factor-like immunoreactivity in the rat central amygdaloid nucleus. Brain Res. 1992;577(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  83. Brown MR, Gray TS. Peptide injections into the amygdala of conscious rats: effects on blood pressure, heart rate and plasma catecholamines. Regul Pept. 1988;21(1–2):95–106.

    Article  CAS  PubMed  Google Scholar 

  84. Ku YH, Tan L, Li LS, Ding X. Role of corticotropin-releasing factor and substance P in pressor responses of nuclei controlling emotion and stress. Peptides. 1998;19(4):677–82.

    Article  CAS  PubMed  Google Scholar 

  85. Hsu DT, Chen FL, Takahashi LK, Kalin NH. Rapid stress-induced elevations in corticotropin-releasing hormone mRNA in rat central amygdala nucleus and hypothalamic paraventricular nucleus: an in situ hybridization analysis. Brain Res. 1998;788(1–2):305–10.

    Article  CAS  PubMed  Google Scholar 

  86. Gardi J, Biro E, Sarnyai Z, Vecsernyes M, Julesz J, Telegdy G. Time-dependent alterations in corticotropin-releasing factor-like immunoreactivity in different brain regions after acute cocaine administration to rats. Neuropeptides. 1997;31(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  87. Paz MC, Assis MA, Cabrera RJ, Cancela LM, Bregonzio C. The AT(1) angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol. Synapse. 2011;65(6):505–12.

    Article  CAS  PubMed  Google Scholar 

  88. Paz MC, Marchese NA, Cancela LM, Bregonzio C. Angiotensin II AT(1) receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. Biomed Res Int. 2013;2013:534817.

    PubMed  PubMed Central  Google Scholar 

  89. Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, et al. Involvement of the brain renin–angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res. 2014;272(314):23.

    Google Scholar 

  90. Pediconi D, Martarelli D, Fontanazza A, Pompei P. Effects of losartan and irbesartan administration on brain angiotensinogen mRNA levels. Eur J Pharmacol. 2005;528(1–3):79–87.

    Article  CAS  PubMed  Google Scholar 

  91. Pelisch N, Hosomi N, Ueno M, Masugata H, Murao K, Hitomi H, et al. Systemic candesartan reduces brain angiotensin II via downregulation of brain renin–angiotensin system. Hypertens Res Off J Jpn Soc Hypertens. 2010;33(2):161–4.

    Article  CAS  Google Scholar 

  92. Trout SJ, Kruk ZL. Differences in evoked dopamine efflux in rat caudate putamen, nucleus accumbens and tuberculum olfactorium in the absence of uptake inhibition: influence of autoreceptors. Br J Pharmacol. 1992;106(2):452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  94. Mertens B, Vanderheyden P, Michotte Y, Sarre S. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum. Neuropharmacology. 2010;58(7):1038–44.

    Article  CAS  PubMed  Google Scholar 

  95. Vanderschuren LJ, Everitt BJ. Behavioral and neural mechanisms of compulsive drug seeking. Eur J Pharmacol. 2005;526(1–3):77–88.

    Article  CAS  PubMed  Google Scholar 

  96. Wise RA. Drug-activation of brain reward pathways. Drug Alcohol Depend. 1998;51(1–2):13–22.

    Article  CAS  PubMed  Google Scholar 

  97. Clark JJ, Bernstein IL. Reciprocal cross-sensitization between amphetamine and salt appetite. Pharmacol Biochem Behav. 2004;78(4):691–8.

    Article  CAS  PubMed  Google Scholar 

  98. Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain angiotensin II AT receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology. 2016;233(5):795–807.

    Google Scholar 

  99. Ferguson AV, Washburn DL, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood). 2001;226(2):85–96.

    CAS  Google Scholar 

  100. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.

    CAS  PubMed  Google Scholar 

  101. Fluharty SJ, Manaker S. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behav Neurosci. 1983;97(5):738–45.

    Article  CAS  PubMed  Google Scholar 

  102. Geerling JC, Loewy AD. Central regulation of sodium appetite. Exp Physiol. 2008;93(2):177–209.

    Article  CAS  PubMed  Google Scholar 

  103. Unger T, Horst PJ, Bauer M, Demmert G, Rettig R, Rohmeiss P. Natriuretic action of central angiotensin II in conscious rats. Brain Res. 1989;486(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  104. Casarsa BS, Marinzalda MA, Marchese NA, Paz MC, Vivas L, Baiardi G, et al. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience. 2015;307:1–13.

    Article  CAS  PubMed  Google Scholar 

  105. Daniels D, Yee DK, Faulconbridge LF, Fluharty SJ. Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology. 2005;146(12):5552–60.

    Article  CAS  PubMed  Google Scholar 

  106. Daniels D, Yee DK, Fluharty SJ. Angiotensin II receptor signalling. Exp Physiol. 2007;92(3):523–7.

    Article  CAS  PubMed  Google Scholar 

  107. Daniels D, Mietlicki EG, Nowak EL, Fluharty SJ. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp Physiol. 2009;94(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  108. Vento PJ, Daniels D. Repeated administration of angiotensin II reduces its dipsogenic effect without affecting saline intake. Exp Physiol. 2010;95(6):736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hunyady L, Catt KJ, Clark AJ, Gaborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. Regul Pept. 2000;91(1–3):29–44.

    Article  CAS  PubMed  Google Scholar 

  110. Sasamura H, Dzau VJ, Pratt RE. Desensitization of angiotensin receptor function. Kidney Int. 1994;46(6):1499–501.

    Article  CAS  PubMed  Google Scholar 

  111. Tang H, Shirai H, Inagami T. Inhibition of protein kinase C prevents rapid desensitization of type 1B angiotensin II receptor. Circ Res. 1995;77(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  112. Moellenhoff E, Blume A, Culman J, Chatterjee B, Herdegen T, Lebrun CJ, et al. Effect of repetitive icv injections of ANG II on c-Fos and AT(1)-receptor expression in the rat brain. Am J Physiol Regul Integr Comp Physiol. 2001;280(4):R1095–104.

    CAS  PubMed  Google Scholar 

  113. Lang RE, Rascher W, Heil J, Unger T, Wiedemann G, Ganten D. Angiotensin stimulates oxytocin release. Life Sci. 1981;29(14):1425–8.

    Article  CAS  PubMed  Google Scholar 

  114. Ferguson AV, Kasting NW. Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regul Pept. 1988;23(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  115. Blackburn RE, Demko AD, Hoffman GE, Stricker EM, Verbalis JG. Central oxytocin inhibition of angiotensin-induced salt appetite in rats. Am J Physiol. 1992;263(6 Pt 2):R1347–53.

    CAS  PubMed  Google Scholar 

  116. Stricker EM, Verbalis JG. Central inhibition of salt appetite by oxytocin in rats. Regul Pept. 1996;66(1–2):83–5.

    Article  CAS  PubMed  Google Scholar 

  117. Stricker EM, Verbalis JG. Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci. 1987;101(4):560–7.

    Article  CAS  PubMed  Google Scholar 

  118. Fitts DA, Zierath DK, Wilkins EE, Bassett JE. Losartan blocks drinking and cFos expression induced by central ornithine vasotocin in rats. Physiol Behav. 2005;86(4):573–7.

    Article  CAS  PubMed  Google Scholar 

  119. Verbalis JG, Mangione MP, Stricker EM. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology. 1991;128(3):1317–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bregonzio PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bregonzio, C., Marchese, N.A., Paz, M.C., de la Villarmois, E.A., Baiardi, G., Pérez, M.F. (2017). The Extent of Neuroadaptive Responses to Psychostimulants: Focus on Brain Angiotensin System. In: Gargiulo, P., Mesones-Arroyo, H. (eds) Psychiatry and Neuroscience Update - Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-319-53126-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53126-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53125-0

  • Online ISBN: 978-3-319-53126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics