The Extent of Neuroadaptive Responses to Psychostimulants: Focus on Brain Angiotensin System

  • Claudia Bregonzio
  • Natalia Andrea Marchese
  • Maria Constanza Paz
  • Emilce Artur de la Villarmois
  • Gustavo Baiardi
  • Mariela Fernanda Pérez


Amphetamine and cocaine are drugs of abuse worldwide consumed for their stimulant properties in the central nervous system. They mainly potentiate noradrenergic and dopaminergic neurotransmission and induce long-term changes in multiple neuronal circuits, modifying the future responses to pharmacological or non-pharmacological challenges. The altered neuronal connectivity induced by psychostimulants has long been studied in reward processing brain areas and in behavioral responses. Different neurotransmitter systems are involved in these responses, including the neuropeptide angiotensin II. Locally produced brain angiotensin II, acting through AT1 receptors, plays an important role in the modulation of central dopaminergic neurotransmission. Dopamine-innervated areas such as caudate putamen, nucleus accumbens, substantia nigra, hypothalamus, and ventral pallidum express high AT1 receptor density. Our recent studies show the role of angiotensin II AT1 receptors in the development of neuroadaptative behavioral and neurochemical changes induced by amphetamine. Moreover, we found alterations in the components of the renin angiotensin system (RAS) and in the functionality of AT1 receptors after amphetamine exposure. The evidence presented in this chapter highlight the RAS as a neuromodulatory system of superior brain activities, and further validate Angiotensin II involvement in amphetamine-induced alterations through AT1 receptor activation. The AT1 receptor blockers are currently and safely used in clinic for different pathologies, so they would be prominent candidates for pharmacological treatment in pathologies related to altered dopamine neurotransmission, such as drug addiction, schizophrenia, or even depression.


Angiotensin II Neuroadaptation Dopamine AT1 receptors Psychostimulants Amphetamine 


  1. 1.
    Angrist B, Corwin J, Bartlik B, Cooper T. Early pharmacokinetics and clinical effects of oral D-amphetamine in normal subjects. Biol Psychiatry. 1987;22(11):1357–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Sherer MA. Intravenous cocaine: psychiatric effects, biological mechanisms. Biol Psychiatry. 1988;24(8):865–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Lieberman JA, Kinon BJ, Loebel AD. Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull. 1990;16(1):97–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Klawans HL, Margolin DI. Amphetamine-induced dopaminergic hypersensitivity in guinea pigs. Implications in psychosis and human movement disorders. Arch Gen Psychiatry. 1975;32(6):725–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Dackis C, Gold MS. Neurotransmitter and neuroendocrine abnormalities associated with cocaine use. Psychiatr Med. 1985;3(4):461–83.PubMedGoogle Scholar
  6. 6.
    Antelman SM, Chiodo LA. Dopamine autoreceptor subsensitivity: a mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biol Psychiatry. 1981;16(8):717–27.PubMedGoogle Scholar
  7. 7.
    Kalivas PW, Pierce RC, Cornish J, Sorg BA. A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol. 1998;12(1):49–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Stewart J, Badiani A. Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol. 1993;4(4):289–312.PubMedGoogle Scholar
  9. 9.
    Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev. 1997;25(2):192–216.PubMedCrossRefGoogle Scholar
  10. 10.
    Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN. A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci. 1999;19(21):9579–86.PubMedGoogle Scholar
  11. 11.
    Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology Off Publ Am Col Neuropsychopharmacology. 2010;35(2):401–15.CrossRefGoogle Scholar
  12. 12.
    Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000;151(2–3):99–120.CrossRefGoogle Scholar
  13. 13.
    Vezina P. D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J Neurosci. 1996;16(7):2411–20.PubMedGoogle Scholar
  14. 14.
    Prasad BM, Hochstatter T, Sorg BA. Expression of cocaine sensitization: regulation by the medial prefrontal cortex. Neuroscience. 1999;88(3):765–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Sorg BA, Kalivas PW. Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex. Neuroscience. 1993;53(3):695–703.PubMedCrossRefGoogle Scholar
  16. 16.
    Sorg BA, Davidson DL, Kalivas PW, Prasad BM. Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J Pharmacol Exp Ther. 1997;281(1):54–61.PubMedGoogle Scholar
  17. 17.
    Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience. 1998;82(4):1103–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Tzschentke TM, Schmidt WJ. The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of the prelimbic medial prefrontal cortex. Brain Res. 1998;795(1–2):71–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. Eur J Pharmacol. 1999;372(2):143–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Richard ML, Liskow BI, Perry PJ. Recent psychostimulant use in hospitalized schizophrenics. J Clin Psychiatry. 1985;46(3):79–83.PubMedGoogle Scholar
  21. 21.
    Lippoldt A, Paul M, Fuxe K, Ganten D. The brain renin–angiotensin system: molecular mechanisms of cell to cell interactions. Clin Exp Hypertens. 1995;17(1–2):251–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Steckelings UM, Bottari SP, Unger T. Angiotensin receptor subtypes in the brain. Trends Pharmacol Sci. 1992;13(9):365–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Steele MK, Stephenson KN, Meredith JM, Levine JE. Effects of angiotensin II on LHRH release, as measured by in vivo microdialysis of the anterior pituitary gland of conscious female rats. Neuroendocrinology. 1992;55(3):276–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Anxiolytic-like action of DuP753, a non-peptide angiotensin II receptor antagonist. Neuroreport. 1990;1(1):20–1.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaiser FC, Palmer GC, Wallace AV, Carr RD, Fraser-Rae L, Hallam C. Antianxiety properties of the angiotensin II antagonist, DUP 753, in the rat using the elevated plus-maze. Neuroreport. 1992;3(10):922–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Georgiev V, Tanaka M, Tsuda A, Koga C, Takeda S, Yokoo H, et al. Effects of angiotensin II on regional brain noradrenaline metabolism in non-stressed and stressed rats. Kurume Med J. 1992;39(4):235–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Cognitive enhancing actions of PD123177 detected in a mouse habituation paradigm. Neuroreport. 1991;2(6):351–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Barnes JM, Barnes NM, Costall B, Coughlan J, Kelly ME, Naylor RJ, et al. Angiotensin-converting enzyme inhibition, angiotensin, and cognition. J Cardiovasc Pharmacol. 1992;19(Suppl 6):S63–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Dennes RP, Barnes JC. Attenuation of scopolamine-induced spatial memory deficits in the rat by cholinomimetic and non-cholinomimetic drugs using a novel task in the 12-arm radial maze. Psychopharmacology (Berl). 1993;111(4):435–41.CrossRefGoogle Scholar
  30. 30.
    Wayner MJ, Armstrong DL, Polan-Curtain JL, Denny JB. Role of angiotensin II and AT1 receptors in hippocampal LTP. Pharmacol Biochem Behav. 1993;45(2):455–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Georgiev V, Kambourova T. Behavioural effects of angiotensin II in the mouse following MPTP administration. Gen Pharmacol. 1991;22(4):625–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Banks RJ, Mozley L, Dourish CT. The angiotensin converting enzyme inhibitors captopril and enalapril inhibit apomorphine-induced oral stereotypy in the rat. Neuroscience. 1994;58(4):799–805.PubMedCrossRefGoogle Scholar
  33. 33.
    Georgiev V, Getova D, Opitz M. Mechanisms of the angiotensin II effects on exploratory behavior of rats in open field. III. Modulatory role of GABA. Methods Find Exp Clin Pharmacol. 1991;13(1):5–9.PubMedGoogle Scholar
  34. 34.
    Wong PC, Duncia JV, Santella 3rd JB, Smith RD, Wexler RR, Timmermans PB, et al. EXP597, a nonpeptide angiotensin II receptor antagonist with high affinities for the angiotensin AT1 and AT2 receptor subtypes. Eur J Pharmacol. 1994;260(2–3):261–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Inagami T, Iwai N, Sasaki K, Yamano Y, Bardhan S, Chaki S, et al. Cloning, expression and regulation of angiotensin II receptors. Eur Heart J. 1994;15(Suppl D):104–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Brown L, Sernia C. Angiotensin receptors in cardiovascular diseases. Clin Exp Pharmacol Physiol. 1994;21(10):811–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Dzau VJ, Pratt R, Gibbons GH. Angiotensin as local modulating factor in ventricular dysfunction and failure due to coronary artery disease. Drugs. 1994;47(Suppl 4):1–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, et al. Angiotensin receptors in the nervous system. Brain Res Bull. 1998;47(1):17–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang CR, Phillips MI, Renaud LP. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J Physiol. 1992;263(6 Pt 2):R1333–8.PubMedGoogle Scholar
  40. 40.
    Bai D, Renaud LP. ANG II AT1 receptors induce depolarization and inward current in rat median preoptic neurons in vitro. Am J Physiol. 1998;275(2 Pt 2):R632–9.PubMedGoogle Scholar
  41. 41.
    Latchford KJ, Ferguson AV. ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R894–902.PubMedCrossRefGoogle Scholar
  42. 42.
    Albrecht D, Nitschke T, Von Bohlen Und Halbach O. Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J Off Publ Federation Am Soc Exp Biol. 2000;14(7):925–31.Google Scholar
  43. 43.
    Martial FP, Thornton SN, Lienard F, Mousseau MC, Nicolaidis S. Tonic neuronal inhibition by AII revealed by iontophoretic application of Losartan, a specific antagonist of AII type-1 receptors. Brain Res Bull. 1994;34(6):533–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Palovcik RA, Phillips MI. Saralasin increases activity of hippocampal neurons inhibited by angiotensin II. Brain Res. 1984;323(2):345–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Albrecht D, Broser M, Kruger H. Excitatory action of angiotensins II and IV on hippocampal neuronal activity in urethane anesthetized rats. Regul Pept. 1997;70(2–3):105–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Albrecht D, Broser M, Kruger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol. 1997;332(1):53–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Xiong HG, Marshall KC. Angiotensin II modulation of glutamate excitation of locus coeruleus neurons. Neurosci Lett. 1990;118(2):261–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Merabet L, de Gasparo M, Casanova C. Dose-dependent inhibitory effects of angiotensin II on visual responses of the rat superior colliculus: AT1 and AT2 receptor contributions. Neuropeptides. 1997;31(5):469–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Simonnet G, Bioulac B, Rodriguez F, Vincent JD. Evidence of a direct action of angiotensin II on neurones in the septum and in the medial preoptic area. Pharmacol Biochem Behav. 1980;13(3):359–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Mooney RD, Zhang Y, Rhoades RW. Effects of angiotensin II on visual neurons in the superficial laminae of the hamster's superior colliculus. Vis Neurosci. 1994;11(6):1163–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Cai Y, Bishop VS. Effects of arginine vasopressin and angiotensin II on area postrema neurons in rabbit brain slice preparation. Neurosci Lett. 1995;190(2):125–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin KS, Chan JY, Chan SH. Involvement of AT2 receptors at NRVL in tonic baroreflex suppression by endogenous angiotensins. Am J Physiol. 1997;272(5 Pt 2):H2204–10.PubMedGoogle Scholar
  53. 53.
    Georgiev V, Gyorgy L, Yonkov D, Getova D, Markovska V, Petkova B. Dopaminergic influence on the effects of angiotensin II in behavioural reactions. Physiol Bohemoslov. 1985;34(Suppl):45–8.PubMedGoogle Scholar
  54. 54.
    Huang BS, Malvin RL. Dopaminergic modulation of some central actions of angiotensin II in vivo. Proc Soc Exp Biol Med Soc Exp Biol Med. 1988;188(4):405–9.CrossRefGoogle Scholar
  55. 55.
    Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118(2):414–20.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Daubert DL, Meadows GG, Wang JH, Sanchez PJ, Speth RC. Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Brain Res. 1999;816(1):8–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Hoebel BG, Rada P, Mark GP, Hernandez L. The power of integrative peptides to reinforce behavior by releasing dopamine. Ann N Y Acad Sci. 1994;739:36–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhuo J, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens. 1998;16(12 Pt 2):2027–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodriguez-Perez AI. Dopamine–angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease. Mov Disord. 2013;28(10):1337–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Labandeira-Garcia JL, Rodriguez-Pallares J, Villar-Cheda B, Rodriguez-Perez AI, Garrido-Gil P, Guerra MJ. Aging, angiotensin system and dopaminergic degeneration in the substantia nigra. Aging Dis. 2011;2(3):257–74.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. Eur J Neurosci. 2010;32(10):1695–706.PubMedCrossRefGoogle Scholar
  62. 62.
    Kloner RA, Hale S, Alker K, Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85(2):407–19.PubMedCrossRefGoogle Scholar
  63. 63.
    Billman GE. Cocaine: a review of its toxic actions on cardiac function. Crit Rev Toxicol. 1995;25(2):113–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Mouhaffel AH, Madu EC, Satmary WA, Fraker Jr TD. Cardiovascular complications of cocaine. Chest. 1995;107(5):1426–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Margolin A, Avants SK, Setaro JF, Rinder HM, Grupp L. Cocaine, HIV, and their cardiovascular effects: is there a role for ACE-inhibitor therapy? Drug Alcohol Depend. 2000;61(1):35–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Goeders NE. A neuroendocrine role in cocaine reinforcement. Psychoneuroendocrinology. 1997;22(4):237–59.PubMedCrossRefGoogle Scholar
  67. 67.
    DeVries AC, Taymans SE, Sundstrom JM, Pert A. Conditioned release of corticosterone by contextual stimuli associated with cocaine is mediated by corticotropin-releasing factor. Brain Res. 1998;786(1–2):39–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Sarnyai Z. Neurobiology of stress and cocaine addiction. Studies on corticotropin-releasing factor in rats, monkeys, and humans. Ann N Y Acad Sci. 1998;851:371–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Zacharieva S, Matrozov P, Stoeva I, Andonova K. The effect of angiotensin-converting enzyme inhibition on ACTH response to corticotropin-releasing hormone (CRH) in normal men. Horm Metab Res. 1991;23(5):245–6.Google Scholar
  70. 70.
    Aguilera G, Kiss A, Luo X. Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol. 1995;7(10):775–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613(2):221–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Dwoskin LP, Jewell AL, Cassis LA. DuP 753, a nonpeptide angiotensin II-1 receptor antagonist, alters dopaminergic function in rat striatum. Naunyn Schmiedebergs Arch Pharmacol. 1992;345(2):153–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Braszko JJ. Participation of D 1-4 dopamine receptors in the pro-cognitive effects of angiotensin IV and des-Phe 6 angiotensin IV. Neurosci Biobehav Rev. 2010;34(3):343–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Stragier B, Sarre S, Vanderheyden P, Vauquelin G, Fournie-Zaluski MC, Ebinger G, et al. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem. 2004;90(5):1251–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Aguilera G, Young WS, Kiss A, Bathia A. Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology. 1995;61(4):437–44.PubMedCrossRefGoogle Scholar
  76. 76.
    DeVries AC, Pert A. Conditioned increases in anxiogenic-like behavior following exposure to contextual stimuli associated with cocaine are mediated by corticotropin-releasing factor. Psychopharmacology (Berl). 1998;137(4):333–40.CrossRefGoogle Scholar
  77. 77.
    Jenkins TA, Mendelsohn FA, Chai SY. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997;68(3):1304–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Acerbo MJ, Johnson AK. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior. Pharmacol Biochem Behav. 2011;98(3):440–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Watanabe MA, Kucenas S, Bowman TA, Ruhlman M, Knuepfer MM. Angiotensin II and CRF receptors in the central nucleus of the amygdala mediate hemodynamic response variability to cocaine in conscious rats. Brain Res. 2010;1309:53–65.PubMedCrossRefGoogle Scholar
  80. 80.
    von Bohlen und Halbach O, Albrecht D. Visualization of specific angiotensin II binding sites in the rat limbic system. Neuropeptides. 1998;32(3):241–5.CrossRefGoogle Scholar
  81. 81.
    Sakanaka M, Shibasaki T, Lederis K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res. 1986;382(2):213–38.PubMedCrossRefGoogle Scholar
  82. 82.
    Uryu K, Okumura T, Shibasaki T, Sakanaka M. Fine structure and possible origins of nerve fibers with corticotropin-releasing factor-like immunoreactivity in the rat central amygdaloid nucleus. Brain Res. 1992;577(1):175–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Brown MR, Gray TS. Peptide injections into the amygdala of conscious rats: effects on blood pressure, heart rate and plasma catecholamines. Regul Pept. 1988;21(1–2):95–106.PubMedCrossRefGoogle Scholar
  84. 84.
    Ku YH, Tan L, Li LS, Ding X. Role of corticotropin-releasing factor and substance P in pressor responses of nuclei controlling emotion and stress. Peptides. 1998;19(4):677–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Hsu DT, Chen FL, Takahashi LK, Kalin NH. Rapid stress-induced elevations in corticotropin-releasing hormone mRNA in rat central amygdala nucleus and hypothalamic paraventricular nucleus: an in situ hybridization analysis. Brain Res. 1998;788(1–2):305–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Gardi J, Biro E, Sarnyai Z, Vecsernyes M, Julesz J, Telegdy G. Time-dependent alterations in corticotropin-releasing factor-like immunoreactivity in different brain regions after acute cocaine administration to rats. Neuropeptides. 1997;31(1):15–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Paz MC, Assis MA, Cabrera RJ, Cancela LM, Bregonzio C. The AT(1) angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol. Synapse. 2011;65(6):505–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Paz MC, Marchese NA, Cancela LM, Bregonzio C. Angiotensin II AT(1) receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. Biomed Res Int. 2013;2013:534817.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, et al. Involvement of the brain renin–angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res. 2014;272(314):23.Google Scholar
  90. 90.
    Pediconi D, Martarelli D, Fontanazza A, Pompei P. Effects of losartan and irbesartan administration on brain angiotensinogen mRNA levels. Eur J Pharmacol. 2005;528(1–3):79–87.PubMedCrossRefGoogle Scholar
  91. 91.
    Pelisch N, Hosomi N, Ueno M, Masugata H, Murao K, Hitomi H, et al. Systemic candesartan reduces brain angiotensin II via downregulation of brain renin–angiotensin system. Hypertens Res Off J Jpn Soc Hypertens. 2010;33(2):161–4.CrossRefGoogle Scholar
  92. 92.
    Trout SJ, Kruk ZL. Differences in evoked dopamine efflux in rat caudate putamen, nucleus accumbens and tuberculum olfactorium in the absence of uptake inhibition: influence of autoreceptors. Br J Pharmacol. 1992;106(2):452–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1–24.PubMedCrossRefGoogle Scholar
  94. 94.
    Mertens B, Vanderheyden P, Michotte Y, Sarre S. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum. Neuropharmacology. 2010;58(7):1038–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Vanderschuren LJ, Everitt BJ. Behavioral and neural mechanisms of compulsive drug seeking. Eur J Pharmacol. 2005;526(1–3):77–88.PubMedCrossRefGoogle Scholar
  96. 96.
    Wise RA. Drug-activation of brain reward pathways. Drug Alcohol Depend. 1998;51(1–2):13–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Clark JJ, Bernstein IL. Reciprocal cross-sensitization between amphetamine and salt appetite. Pharmacol Biochem Behav. 2004;78(4):691–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain angiotensin II AT receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology. 2016;233(5):795–807.Google Scholar
  99. 99.
    Ferguson AV, Washburn DL, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood). 2001;226(2):85–96.Google Scholar
  100. 100.
    Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.PubMedGoogle Scholar
  101. 101.
    Fluharty SJ, Manaker S. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behav Neurosci. 1983;97(5):738–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Geerling JC, Loewy AD. Central regulation of sodium appetite. Exp Physiol. 2008;93(2):177–209.PubMedCrossRefGoogle Scholar
  103. 103.
    Unger T, Horst PJ, Bauer M, Demmert G, Rettig R, Rohmeiss P. Natriuretic action of central angiotensin II in conscious rats. Brain Res. 1989;486(1):33–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Casarsa BS, Marinzalda MA, Marchese NA, Paz MC, Vivas L, Baiardi G, et al. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience. 2015;307:1–13.PubMedCrossRefGoogle Scholar
  105. 105.
    Daniels D, Yee DK, Faulconbridge LF, Fluharty SJ. Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology. 2005;146(12):5552–60.PubMedCrossRefGoogle Scholar
  106. 106.
    Daniels D, Yee DK, Fluharty SJ. Angiotensin II receptor signalling. Exp Physiol. 2007;92(3):523–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Daniels D, Mietlicki EG, Nowak EL, Fluharty SJ. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp Physiol. 2009;94(1):130–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Vento PJ, Daniels D. Repeated administration of angiotensin II reduces its dipsogenic effect without affecting saline intake. Exp Physiol. 2010;95(6):736–45.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hunyady L, Catt KJ, Clark AJ, Gaborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. Regul Pept. 2000;91(1–3):29–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Sasamura H, Dzau VJ, Pratt RE. Desensitization of angiotensin receptor function. Kidney Int. 1994;46(6):1499–501.PubMedCrossRefGoogle Scholar
  111. 111.
    Tang H, Shirai H, Inagami T. Inhibition of protein kinase C prevents rapid desensitization of type 1B angiotensin II receptor. Circ Res. 1995;77(2):239–48.PubMedCrossRefGoogle Scholar
  112. 112.
    Moellenhoff E, Blume A, Culman J, Chatterjee B, Herdegen T, Lebrun CJ, et al. Effect of repetitive icv injections of ANG II on c-Fos and AT(1)-receptor expression in the rat brain. Am J Physiol Regul Integr Comp Physiol. 2001;280(4):R1095–104.PubMedGoogle Scholar
  113. 113.
    Lang RE, Rascher W, Heil J, Unger T, Wiedemann G, Ganten D. Angiotensin stimulates oxytocin release. Life Sci. 1981;29(14):1425–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Ferguson AV, Kasting NW. Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regul Pept. 1988;23(3):343–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Blackburn RE, Demko AD, Hoffman GE, Stricker EM, Verbalis JG. Central oxytocin inhibition of angiotensin-induced salt appetite in rats. Am J Physiol. 1992;263(6 Pt 2):R1347–53.PubMedGoogle Scholar
  116. 116.
    Stricker EM, Verbalis JG. Central inhibition of salt appetite by oxytocin in rats. Regul Pept. 1996;66(1–2):83–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Stricker EM, Verbalis JG. Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci. 1987;101(4):560–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Fitts DA, Zierath DK, Wilkins EE, Bassett JE. Losartan blocks drinking and cFos expression induced by central ornithine vasotocin in rats. Physiol Behav. 2005;86(4):573–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Verbalis JG, Mangione MP, Stricker EM. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology. 1991;128(3):1317–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Claudia Bregonzio
    • 1
  • Natalia Andrea Marchese
    • 1
  • Maria Constanza Paz
    • 1
  • Emilce Artur de la Villarmois
    • 1
  • Gustavo Baiardi
    • 2
  • Mariela Fernanda Pérez
    • 1
  1. 1.Departamento de Farmacología, Facultad de Ciencias QuímicasInstituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba (UNC)CordobaArgentina
  2. 2.Laboratorio de Neurofarmacología, Instituto de Investigaciones, Biológicas y Tecnológicas (IIBYT-CONICET)Universidad Nacional de Córdoba, CórdobaCordobaArgentina

Personalised recommendations