Advertisement

Nanoparticles for Biofuels Production from Lignocellulosic Waste

  • Neha SrivastavaEmail author
  • Manish Srivastava
  • P. K. Mishra
  • Pardeep Singh
  • Himanshu Pandey
  • P. W. Ramteke
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)

Abstract

Lignocellulosic biomass is a sustainable alternative to current biofuels. The conversion of biomass-based sugars into biofuels, which emerged in 1970, is gaining more attention due to fossil fuel issues. Biohydrogen and bioethanol from cellulosic wastes is a sustainable and solves economic issues. This chapter reviews the use of nanoparticles for the bioconversion of biomass into biofuels.

Keywords

Biofuels Bioethanol Biohydrogen Cellulases Lignocellulosic waste Nanoparticles Immobilization Thermal stability 

Notes

Acknowledgements

Authors N.S. and Prof. P.K. Mishra thankfully acknowledge to DST, New Delhi, India for providing the Women scientist-B fellowship (SEED/DISHA/WOSB/047/2012/G) and Department of Chemical Engineering and Technology, IIT (BHU), Varanasi, India. M.S. acknowledges the Department of Science and Technology, Govt. of India for awarding DST INSPIRE Faculty Award [IFA13-MS-02] 2014. P. Singh thankfully acknowledges Department of Chemistry, IIT (BHU), Varanasi, India.

References

  1. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 101:4851–4861. doi: 10.1016/j.biortech.2009.11.093 CrossRefPubMedGoogle Scholar
  2. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nanomaterials: a review. Biotechnol Adv 30:512–523. doi: 10.1016/j.biotechadv.2011.09.005 CrossRefPubMedGoogle Scholar
  3. Barakat A, Monlau F, Steyer JP, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104:90–99. doi: 10.1016/j.biortech.2011.10.060 CrossRefPubMedGoogle Scholar
  4. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888. doi: 10.1080/09593331003710236 CrossRefPubMedGoogle Scholar
  5. Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fementative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117. doi: 10.1016/j.biortech.2012.12.168 CrossRefPubMedGoogle Scholar
  6. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria andthermostable enzymes. Bioresour Technol 128:751–759. doi: 10.1016/j.biortech.2012.10.145 CrossRefPubMedGoogle Scholar
  7. Cai Y, Lai C, Li S, Liang Z, Zhu M, Liang S, Wang J (2011) Disruption of lactated hydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacteriumaotearoense. Enzym Microb Technol 48:155–161. doi: 10.1016/j.enzmictec.2010.10.006 CrossRefGoogle Scholar
  8. Chaker M, Sillanpaa M (2013) Recent research and developments in biodiesel production from renewable bioresources. Recent Patents Chem Eng 6:184–193. doi: 10.2174/2211334707999140221164609 CrossRefGoogle Scholar
  9. Chandra M, Kalra A, Sharma PK, Sangwan, Kumar H, Sangwan RS (2010) Optimization of cellulases production by Trichodermacitrinoviride on marc of Artemisia annuaand its application for bioconversion process. Biomass Bioenerg 34: 805–811. http://dx.doi.org/10.1016/j.biombioe.2010.01.024
  10. Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. Int J Mol Sci 16:8266–8293. doi: 10.3390/ijms16048266 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang T, Yao S (2011) Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 92:13–27. doi: 10.1007/s00253-011-3456-3 CrossRefPubMedGoogle Scholar
  12. Choedkiatsaku NK, Kiatkittipona W, Laosiripojana N, Assabumrungrat S (2011) Patent review on “biodiesel production process”. Recent Patents Chem Eng. 4:265–279Google Scholar
  13. Dutta N, Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2014) Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles. Bioresour Technol 153:269–277. doi:  10.1016/j.biortech.2013.12.016
  14. Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21:855–862. doi: 10.1007/s11274-004-5972-0 CrossRefGoogle Scholar
  15. Hahn HB, Galbe M, Gorwa GMF, Liden G, Zacchi G (2006) Bioethanol: the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi: 10.1016/j.tibtech.2006.10.004 CrossRefGoogle Scholar
  16. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29PubMedGoogle Scholar
  17. Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. doi: 10.1016/j.biombioe.2004.09.002
  18. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi: 10.1016/j.biortech.2008.05.027 CrossRefPubMedGoogle Scholar
  19. Hongliang H, Maojin C, Liling W, Haijun Y, Jianquan S (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102:7903–7909. doi: 10.1016/j.biortech.2011.05.089 CrossRefGoogle Scholar
  20. Hussein AK (2015) Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476. doi: 10.1016/j.rser.2014.10.027 CrossRefGoogle Scholar
  21. Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptorsaccharolyticus and comparison with related studies. Int. J. Hydrogen Energy 34:3659–3670. doi: 10.1016/j.ijhydene.2009.02.082 CrossRefGoogle Scholar
  22. Jordana J, Challa SSRK, Chandra T (2011) Preparation and characterization of cellulase-boundmagnetite nanoparticles. J Mol Catal B-Enzym 68:139–146. doi: 10.1016/j.molcatb.2010.09.010 CrossRefGoogle Scholar
  23. Kendry P (2002) Energy production from biomass (Part2): Conversion technologies. Bioresour Technol 83:47–54. doi: 10.1016/S0960-8524(01)00119-5 CrossRefGoogle Scholar
  24. Lower SK, Hochella MF Jr, Beveridge TJ (2001) Bacterial recognition of mineralsurfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292:1360–1363. doi: 10.1126/science.1059567 CrossRefPubMedGoogle Scholar
  25. Lu Y, Zhang YH, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A 103:16165–16169. doi: 10.1073/pnas.0605381103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919. doi: 10.1016/j.energy.2006.10.017 CrossRefGoogle Scholar
  27. Manzanera M, Molina MML, Gonzalez LJ (2008) Biodiesel: an alternative fuel. Recent Patents Biotechnol 2:25–34. doi: 10.2174/187220808783330929 CrossRefGoogle Scholar
  28. Olga N, Biebesheimer M, Zaky A, Gruden CL (2010) Assessing the impact of titanium dioxide and zinc oxide nanoparticles on bacteria using a fluorescent-based cell membrane integrity assay. Environ Eng Sci 27:329–335. doi: 10.1089/ees.2009.0332
  29. Pandey A, Srivastava N, Sinha P (2012) Optimization of photo-fermentative hydrogen production by Rhodobactersphaeroides NMBL-01. Biomass Bioenergy 37:251–256. doi: 10.1016/j.biombioe.2011.12.005 CrossRefGoogle Scholar
  30. Rawat R, Srivastava N, Chadha BS, Oberoi HS (2014) Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillusniger HO. Energy Fuel 28:5067–5075. doi: 10.1021/ef500891g CrossRefGoogle Scholar
  31. Sahaym U, Norton M (2008) Advances in the application of nanotechnology in enabling a ‘hydrogeneconomy’. J Mater Sci 43:5395. doi: 10.1007/s10853-008-2749-0 CrossRefGoogle Scholar
  32. Shi WT, Ma ZF (2010) Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens. Bioelectron. 26:1098–1103. doi: 10.1016/j.bios.2010.08.072 CrossRefPubMedGoogle Scholar
  33. Shi WT, Ma ZF (2011) A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. Biosens Bioelectron 26:3068–3071. doi: 10.1016/j.bios.2010.11.048 CrossRefPubMedGoogle Scholar
  34. Singh P, Singh R, Borthakur A, Srivastava P, Srivastava N, Tiwari D, Mishra PK (2016) Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energ Ecol Environ 1:131–140. doi: 10.1007/s40974-016-0009-8 CrossRefGoogle Scholar
  35. Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 2014(4):8271–8277. doi: 10.1039/C3RA46112B CrossRefGoogle Scholar
  36. Srivastava N, Jaiswal P (2016). Production of cellulases using agriculture waste: application in biofuels production. In: Rajan Kumar Gupta, Satya Shila Singh (ed) Environmental biotechnology: a new approach. Published by: DAYA PUBLISHING HOUSE, NEW DELHI, Chapter 15. 233–244Google Scholar
  37. Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J (2014a) Effect of nickel-cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolraent Eurotiyomycetessp. NS Appl Biochem Biotechnol 174:1092–1103. doi: 10.1007/s12010-014-0940-0 CrossRefPubMedGoogle Scholar
  38. Srivastava N, Rawat R, Oberoi HS (2014b) Application of thermostable cellulases in biofuels production. Recent Adv Bioenergy Res Vol III, 121–129, ISBN 978–81–927097-2-7Google Scholar
  39. Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015a) Application of Cellulases in Biofuels Industries: An Overview. J. Biofuel Bioenerg 1:55–63CrossRefGoogle Scholar
  40. Srivastava N, Rawat R, Oberoi HS, Ramteke PW (2015b) A review on fuel ethanol production from lignocellulosic biomass. Int J Green En 12:949–960. doi: 10.1080/15435075.2014.890104 CrossRefGoogle Scholar
  41. Srivastava N, Singh J, Srivastava M, Ramteke PW, Mishra PK (2015c) Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol 183:262–266. doi: 10.1016/j.biortech.2015.02.059 CrossRefPubMedGoogle Scholar
  42. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanolproduction: a review. Bioresour Technol 83:1–11. doi: 10.1016/S0960-8524(01)00212-7 CrossRefPubMedGoogle Scholar
  43. Taherzadeh MJ, Karimi K (2008) Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int J Mol Sci 9:1621–1651. doi: 10.3390/ijms9091621 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis. Bioresour Technol 135:2–6. doi: 10.1016/j.biortech.2013.01.047 CrossRefPubMedGoogle Scholar
  45. Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145. doi: 10.1007/10_2007_065 PubMedGoogle Scholar
  46. Wang JL, Wan W (2008) Effect of Fe2+ concentrations on fermentative hydrogen production by mixed cultures. Int. J. Hydrogen Energy 33:1215–1220. doi: 10.1016/j.ijhydene.2007.12.044 CrossRefGoogle Scholar
  47. Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34:799–811. doi: 10.1016/j.ijhydene.2008.11.015 CrossRefGoogle Scholar
  48. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y (2010) A novel thermostable cellulase from Fervidobacteriumnodosum. J Mol Catal B Enzym 66:294–301. doi: 10.1016/j.molcatb.2010.06.006 CrossRefGoogle Scholar
  49. Wei Y, Li X, Yu L, Zou D, Yuan H (2015) Mesophilic anaerobic co-digestion of cattle manure and corn stoverwith biological and chemical pretreatment. Bioresour Technol 198:431–436. http://dx.doi.org/10.1016/j.biortech.2015.09.035
  50. Welker CM, Balasubramanian VK, Petti C, Rai KM, DeBolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–7676. doi: 10.3390/en8087654
  51. Xu S, Liu H, Fan Y, Schaller R, Jiao J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle decorated anodes. Appl Microbiol Biotechnol 93:871–880. doi: 10.1007/s00253-011-3643-2 CrossRefPubMedGoogle Scholar
  52. Yang Z, Huang R, Qi W, Tong L, Su R, He Z (2015) Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chem Eng J 280: 90–98. http://dx.doi.org/10.1016/j.cej.2015.05.091
  53. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55. doi: 10.1016/S0065-2164(10)70001-0 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial waste water. Int. J. Hydrogen Energy 32:17–23. doi: 10.1016/j.ijhydene.2006.06.004 CrossRefGoogle Scholar
  55. Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142: 240–245. http://dx.doi.org/10.1016/j.biortech.2013.05.042

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Neha Srivastava
    • 1
    • 2
    Email author
  • Manish Srivastava
    • 3
  • P. K. Mishra
    • 2
  • Pardeep Singh
    • 4
    • 5
  • Himanshu Pandey
    • 6
  • P. W. Ramteke
    • 1
  1. 1.Department of Biological SciencesSam Higginbottom Institute of Agriculture Technology & Sciences (Formerly Allahabad Agricultural Institute) Deemed to be UniversityAllahabadIndia
  2. 2.Department of Chemical Engineering and TechnologyIndian Institute of Technology (BHU)VaranasiIndia
  3. 3.Department of Physics & AstrophysicsUniversity of DelhiDelhiIndia
  4. 4.Department of ChemistryIndian Institute of Technology (BHU)VaranasiIndia
  5. 5.Department of Enviromental Studies, PGDAV CollegeUniversity of DelhiDelhiIndia
  6. 6.Department of Pharmaceutical SciencesSam Higginbottom Institute of Agriculture Technology & Sciences (Formerly Allahabad Agriculture Institute) Deemed to be UniversityAllahabadIndia

Personalised recommendations