Enzymatic Nanobiosensors in the Agricultural and Food Industry

  • Madan L. VermaEmail author
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)


Detection of the environmental contaminants in the agricultural and food industries is a major challenge. Indeed, the widespread contamination of food by pesticides and other pollutants has raised concerns of the public. Fast, cheap and sensitive sensors are thus needed. The technology of enzymatic nanobiosensor offers a quick and cost-effective solution to the current concerns of agri-food industry. This article reviews recent trends in enzymatic nanobiosensor technology employed in agri-food industries, in particular the design of a bioconjugation strategy. Nanobiosensors offer ultrasensitivity and quick detection time for various pesticides and food-borne contaminants. The minimal detection limit of contaminant in soil samples by an enzymatic nanobiosensor is in the range of 50 picogram per litre, while the minimal contaminant detection limit in food samples is 1.6 nanomolar.


Nanomaterials Enzymes Nano-Bioconjugation Molecular-Modeling Environmental Monitoring Pesticide Food-Quality Food-Safety 



The author would like to thank Director, Centre for Chemistry and Biotechnology for providing necessary facility to carry out this work at Deakin University, Australia. The author declares that he has no conflict of interest.


  1. Amarante AM, Oliveira GS, Bueno CC, Cunha RA, Lerich JCM, Freitas LCG, Franca EF, Oliveira ON Jr, Leite FL (2014) Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. J Mol Graph Model 53:100–104. doi: 10.1016/j.jmgm.2014.07.009 CrossRefPubMedGoogle Scholar
  2. Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 37(8):1657–1669. doi: 10.1081/AL-120037594 CrossRefGoogle Scholar
  3. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–664. doi: 10.1038/nnano.2009.242 CrossRefPubMedGoogle Scholar
  4. Bello-Gil D, Maestro B, Fonseca J, Feliu JM, Climent V, Sanz JM (2014) Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes. PLoS One 9(1):e87995. doi: 10.1371/journal.pone.0087995 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao M, Li Z, Wang J, Ge W, Yue T, Li R, Colvin VL, Yu WW (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27:47–56. doi: 10.1016/j.tifs.2012.04.003 CrossRefGoogle Scholar
  6. Cheng Y, Liu Y, Huang J, Xian Y, Zhang W, Zhang Z, Jin L (2008) Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta 75(1):167–171. doi: 10.1016/j.talanta.2007.10.047 PubMedGoogle Scholar
  7. Comparelli R, Curri ML, Cozzoli PD, Striccoli M (2007) Optical biosensing based on metal and semiconductor colloidal nanocrystals. In: Kumar CSSR (ed) Nanotechnologies for the life sciences: nanomaterials for biosensors, vol 8. Verlag Chemie, Weinheim, pp 123–174. doi: 10.1002/9783527610419.ntls0086 Google Scholar
  8. Da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON Jr, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684. doi: 10.1166/jnn.2014.9360 CrossRefPubMedGoogle Scholar
  9. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi: 10.1016/j.foodres.2015.01.005 CrossRefGoogle Scholar
  10. Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759. doi: 10.1039/C1AN15838D CrossRefPubMedGoogle Scholar
  11. Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289. doi: 10.1016/j.bios.2007.05.002 CrossRefPubMedGoogle Scholar
  12. Franca EF, Leite FL, Cunha RA, Oliveira ON Jr, Freitas LCG (2011) Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys Chem Chem Phys 13:8894–8899. doi: 10.1039/C1CP20393B CrossRefPubMedGoogle Scholar
  13. Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638. doi: 10.3390/s100100625 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Tech (Campinas) 30(3):573–581. doi: 10.1590/S0101-20612010000300002 Google Scholar
  15. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. doi: 10.1016/j.biotechadv.2011.06.007 CrossRefPubMedGoogle Scholar
  16. Jain Y, Rana C, Goyal A, Sharma N, Verma ML, Jana AK (2010) Biosensors, types and applications. BEATS 2010. In: Proceedings of international conference on biomedical engineering and assistive Technol Jalandhar India. 2010:1–6.
  17. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58. doi: 10.1002/elan.200403118 CrossRefGoogle Scholar
  18. Kanwar SS, Verma ML (2010) Lipases. In: Encyclopedia of Industrial Biotechnology. Wiley Publishers, Hoboken, pp 1–16. doi: 10.1002/9780470054581.eib387 Google Scholar
  19. Kanwar SS, Verma ML, Maheshwari C, Chauhan S, Chimni SS, Chauhan GS (2007) Properties of poly(AAc-co-HPMA-cl-EGDMA) hydrogel-bound lipase of Pseudomonas aeruginosa MTCC-4713 and its use in synthesis of methyl acrylate. J Appl Polym Sci 104:183–191. doi: 10.1002/app.25315 CrossRefGoogle Scholar
  20. Kanwar SS, Gehlot S, Verma ML, Gupta R, Kumar Y, Chauhan GS (2008a) Synthesis of geranyl butyrate with the poly(acrylic acid-co-hydroxy propyl methacrylate-cl-ethylene glycol dimethacrylate) hydrogel immobilized lipase of Pseudomonas aeruginosa MTCC-4713. J Appl Polym Sci 110:2681–2692. doi: 10.1002/app.28241 CrossRefGoogle Scholar
  21. Kanwar SS, Sharma C, Verma ML, Chauhan S, Chimni SS, Chauhan GS (2008b) Short-chain ester synthesis by transesterification employing poly (MAc-co-DMA-cl-MBAm) hydrogel-bound lipase of Bacillus coagulans MTCC-6375. J Appl Polym Sci 109:1063–1071. doi: 10.1002/app.25320 CrossRefGoogle Scholar
  22. Ko S, Grant SA (2006) A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron 21:1283–1290. doi: 10.1016/j.bios.2005.05.017 CrossRefPubMedGoogle Scholar
  23. Kumar S, Jana AK, Maiti M, Dhamija I (2014) Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J Nanopart Res 16:2233. doi: 10.1007/s11051-013-2233-x CrossRefGoogle Scholar
  24. Ley C, Holtmann D, Mangold KM, Schrader J (2011) Immobilization of histidine-tagged proteins on electrodes. Colloids Surf B: Biointerfaces 88:539–551. doi: 10.1016/j.colsurfb.2011.07.044 CrossRefPubMedGoogle Scholar
  25. Li X, Zhou Y, Zheng Z, Yue X, Dai Z, Liu S, Tang Z (2009) Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 25(11):6580–6586. doi: 10.1021/la900066z CrossRefPubMedGoogle Scholar
  26. Li SC, Chen JH, Cao H, Yao DS, Liu DL (2011) Amperometric biosensor for aflatoxin B1 based on aflatoxin oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49. doi: 10.1016/j.foodcont.2010.05.005 CrossRefGoogle Scholar
  27. Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843. doi: 10.1021/ac051559q CrossRefPubMedGoogle Scholar
  28. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500. doi: 10.1016/j.biotechadv.2008.05.007 CrossRefPubMedGoogle Scholar
  29. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463. doi: 10.1016/j.enzmictec.2007.01.018 CrossRefGoogle Scholar
  30. Miranda OR, Li X, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133:9650–9653. doi: 10.1021/ja2021729 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ, Cahill DM (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826. doi: 10.1021/am303208t CrossRefPubMedGoogle Scholar
  32. Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119:380–385. doi: 10.1016/j.foodchem.2009.05.087 CrossRefGoogle Scholar
  33. Pal S, Sharma MK, Danielsson B, Willander M, Chatterjee R, Bhand S (2014) A miniaturized nanobiosensor for choline analysis. Biosens Bioelectron 54:558–564. doi: 10.1016/j.bios.2013.11.057 CrossRefPubMedGoogle Scholar
  34. Pavlidis IV, Patila M, Bornscheuer UT, Gournis D, Stamatis H (2014) Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol 32(6):312–320. doi: 10.1016/j.tibtech.2014.04.004 CrossRefPubMedGoogle Scholar
  35. Perez-Lopez B, Merkoci A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639. doi: 10.1016/j.tifs.2011.04.001 CrossRefGoogle Scholar
  36. Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials-acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors (Basel, Switzerland) 9(6):4034–4055. doi: 10.3390/s90604034 CrossRefGoogle Scholar
  37. Prakash-Deo R, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189. doi: 10.1016/j.aca.2004.09.072 CrossRefGoogle Scholar
  38. Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31:215–216. doi: 10.1016/j.tibtech.2013.01.002 CrossRefPubMedGoogle Scholar
  39. Putzbach W, Ronkainenen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840. doi: 10.3390/s130404811 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV, Simonian AL (2009) Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids Surf B: Biointerfaces 73:58–64. doi: 10.1016/j.colsurfb.2009.04.024 CrossRefPubMedGoogle Scholar
  41. Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. doi: 10.1007/s11051-014-2464-5 CrossRefGoogle Scholar
  42. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. doi: 10.1016/j.biotechadv.2011.09.003 CrossRefPubMedGoogle Scholar
  43. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. doi: 10.2147/NSA.S39406 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Serna-Cock L, Zetty-Arenas AM, Ayala-Aponte A (2009) Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chilean J Agr Res 69(2):270–280. doi: 10.4067/S0718-58392009000200017 Google Scholar
  45. Sharma TK, Ramanathan R, Rakwal R, Agrawal GK, Bansal V (2015) Moving forward in plant food safety and security through NanoBioSensors: adopt or adapt biomedical technologies? Proteomics 15(10):1680–1692. doi: 10.1002/pmic.201400503 CrossRefPubMedGoogle Scholar
  46. Simpson-Stroot JM, Kearns EA, Stroot PG, Magana S, Lim DV (2008) Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7. J Microbiol Methods 72(1):29–37. doi: 10.1016/j.mimet.2007.11.004 CrossRefPubMedGoogle Scholar
  47. Singh N, Srivatava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α-galactosidase immobilization onto functionalized grapheme nanosheets using response surface methods and its applications. Food Chem 142:430–438. doi: 10.1016/j.foodchem.2013.07.079 CrossRefPubMedGoogle Scholar
  48. Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agric 30:205–218. doi: 10.1016/S0168-1699(00)00165-4 CrossRefGoogle Scholar
  49. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853. doi: 10.1016/j.bios.2006.11.024 CrossRefPubMedGoogle Scholar
  50. Verma ML (2009) Studies on lipase of Bacillus cereus MTCC-8372 and its application for synthesis of esters. PhD thesis, HP University, Shimla.
  51. Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia VC (ed) Microbial factories, 1st edn. Springer India Publisher, New Delhi, pp 87–103. doi: 10.1007/978-81-322-2598-0_6 CrossRefGoogle Scholar
  52. Verma ML, Kanwar SS (2008) Properties and application of Poly (Mac-co-DMA-cl-MBAm) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846. doi: 10.1002/app.28539 CrossRefGoogle Scholar
  53. Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 57:187–201. doi: 10.1556/Amicr.57.2010.3.4 CrossRefGoogle Scholar
  54. Verma ML, Kanwar SS (2012) Harnessing the potential of thermophiles: the variants of extremophiles. Dyn Biochem Process Biotechnol Mol Biol 6(1):28–39.
  55. Verma ML, Azmi W, Kanwar SS (2008a) Microbial lipases: at the interface of aqueous and non-aqueous media-a review. Acta Microbiol Immunol Hung 55:265–293. doi: 10.1556/Amicr.55.2008.3.1 CrossRefPubMedGoogle Scholar
  56. Verma ML, Chauhan GS, Kanwar SS (2008b) Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC-8372. Acta Microbiol Immunol Hung 55:327–342. doi: 10.1556/Amicr.55.2008.3.4 CrossRefPubMedGoogle Scholar
  57. Verma ML, Azmi W, Kanwar SS (2009) Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 56:229–242. doi: 10.1556/Amicr.56.2009.3.3 CrossRefPubMedGoogle Scholar
  58. Verma ML, Kanwar SS, Jana AK (2010). Bacterial biosensors for measuring availability of environmental pollutants. In: BEATS 2010 Proceedings of 2010 international conference on biomedical engineering and assistive Technol Jalandhar India. 2010:1–7.
  59. Verma ML, Azmi W, Kanwar SS (2011) Enzymatic synthesis of isopropyl acetate catalysed by immobilized Bacillus cereus lipase in organic medium. Enzyme Res 2011:7. doi: 10.4061/2011/919386 CrossRefGoogle Scholar
  60. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437. doi: 10.1016/j.ijbiomac.2011.12.029 CrossRefPubMedGoogle Scholar
  61. Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39. doi: 10.1007/s00253-012-4535-9 CrossRefPubMedGoogle Scholar
  62. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013b) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6. doi: 10.1016/j.biortech.2013.01.047 CrossRefPubMedGoogle Scholar
  63. Verma ML, Naebe M, Barrow CJ, Puri M (2013c) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642. doi: 10.1371/journal.pone.0073642 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013d) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306. doi: 10.1016/j.biortech.2013.01.065 CrossRefPubMedGoogle Scholar
  65. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36:108–119. doi: 10.3109/07388551.2014.928811 CrossRefPubMedGoogle Scholar
  66. Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal Chem 54:1–10. doi: 10.1016/j.trac.2013.10.007 CrossRefGoogle Scholar
  67. Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens Bioelectron 67:287–295. doi: 10.1016/j.bios.2014.08.036 CrossRefPubMedGoogle Scholar
  68. Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens Bioelectron 23:135–139. doi: 10.1016/j.bios.2007.03.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Chemistry and Biotechnology, Faculty of Science Engineering & Built EnvironmentDeakin UniversityGeelongAustralia

Personalised recommendations