Advertisement

Nanotechnology Delivery Systems of Coenzyme Q10: Pharmacokinetic and Clinical Implications

  • Shweta Paroha
  • Arvind K. Singh Chandel
  • Ravindra Dhar DubeyEmail author
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)

Abstract

Coenzyme Q10 is an antioxidant essential for biochemical reactions in the human body. The deficiency of the coenzyme Q10 in the body leads to several disorders including neurological degeneration, ageing, and cancer. In cell mitochondria, coenzyme Q10 is a cofactor as electron transport system and is responsible for the synthesis of adenosine triphosphate (ATP), a major source of energy. Clinical trials reported the role of coenzyme Q10 in as the drug or dietary supplement. The major issue concerning coenzyme Q10 delivery is its high molecular weight and poor water solubility. This limitation ultimately leads to its poor oral bioavailability. Traditional approaches has been made to overcome poor water solubility, such as size reduction and ionization. New drug delivery carriers include nanoparticles, solid dispersions, liposomes, nanoemulsions, self-emulsifying drug delivery system, nanostructured lipid carrier, cyclodextrins and nanocapsules. These nanocarriers facilitate absorption of coenzyme Q10 from gastrointestinal tract and increase oral bioavailability. Here we review nanotechnology-based drug delivery system for coenzyme Q10 with special emphasis on pharmacokinetic perspective and clinical relevance.

Keywords

Coenzyme Q10 Nanotechnology Pharmacokinetic Bioavailability Delivery Systems Dietary Supplement Antioxidant 

Notes

Acknowledgment

The author (RDD) acknowledge DST, New Delhi, India for the financial assistance in the form of INSPIRE Fellowship.

References

  1. Baisaeng N (2013) Ultra-small lipid nanocarriers loaded with coenzyme Q10. PhD thesis, Freie Universitate BerlinGoogle Scholar
  2. Baisaeng N, Shegokar R, Maller RH, Keck CM (2011) Development of ultra-small nanostructured lipid carriers (NLC). In: American Association of Pharmaceutical Scientists (AAPS) annual meeting, Washington, DC, USA, pp 23–27Google Scholar
  3. Baisaeng N, Sinambela P, Okonogi S, Maller RH, Keck CM (2012) The physicochemical characterization of CoQ10-loaded ultra-small lipid nanocarriers. In: T3254, AAPS annual meeting, Washington, DC, pp 14–18Google Scholar
  4. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, Jee JP, Lee YB, Woo JS, Yong CS, Choi HG (2009) Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 374(1–2):66–72. doi:S0378-5173(09)00136-7Google Scholar
  5. Balercia G, Mancini A, Paggi F, Tiano L, Pontecorvi A, Boscaro M, Lenzi A, Littarru GP (2009) Coenzyme Q10 and male infertility. J Endocrinol Investig 32(7):626–632. doi: 10.3275/63016301 CrossRefGoogle Scholar
  6. Belhaj N, Dupuis F, Arab-Tehrany E, Denis FM, Paris C, Lartaud I, Linder M (2012) Formulation, characterization and pharmacokinetic studies of coenzyme Q(1)(0) PUFA's nanoemulsions. Eur J Pharm Sci 47(2):305–312. doi:S0928-0987(12)00252-7Google Scholar
  7. Bender AR, von Briesen H, Kreuter J, Duncan IB, Rubsamen-Waigmann H (1996) Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 40(6):1467–1471PubMedPubMedCentralGoogle Scholar
  8. Bhandari KH, Newa M, Kim JA, Yoo BK, Woo JS, Lyoo WS, Lim HT, Choi HG, Yong CS (2007) Preparation, characterization and evaluation of coenzyme Q10 binary solid dispersions for enhanced solubility and dissolution. Biol Pharm Bull 30(6):1171–1176. doi:JST.JSTAGE/bpb/30.1171Google Scholar
  9. Bonduelle S, Foucher C, Leroux JC, Chouinard F, Cadieux C, Lenaerts V (1992) Association of cyclosporin to isohexylcyanoacrylate nanospheres and subsequent release in human plasma in vitro. J Microencapsul 9(2):173–182CrossRefPubMedGoogle Scholar
  10. Bruge F, Damiani E, Puglia C, Offerta A, Armeni T, Littarru GP, Tiano L (2013) Nanostructured lipid carriers loaded with CoQ10: effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions. Int J Pharm 455(1–2):348–356. doi:S0378-5173(13)00595-4Google Scholar
  11. Chai W, Cooney RV, Franke AA, Shvetsov YB, Caberto CP, Wilkens LR, Le Marchand L, Henderson BE, Kolonel LN, Goodman MT (2010) Plasma coenzyme Q10 levels and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomark Prev 19(9):2351–2356. doi:1055-9965.EPI-10-0396 [pii]Google Scholar
  12. Cheuk SY, Shih FF, Champagne ET, Daigle KW, Patindol JA, Mattison CP, Boue SM (2015) Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chem 174:585–590. doi:S0308-8146(14)01760-9Google Scholar
  13. Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302. doi:S0022-3549(15)38085-0Google Scholar
  14. Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, Yang JS, Kim S, Kim YK, Seong SY (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6(10):675–682. doi:nnano.2011.149Google Scholar
  15. Cho HT, Salvia-Trujillo L, Kim J, Park Y, Xiao H, McClements DJ (2014) Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chem 156:117–122. doi:S0308-8146(14)00116-2Google Scholar
  16. Choi MJ, McDonagh AM, Maynard P, Roux C (2008) Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci Int 179(2–3):87–97. doi:S0379-0738(08)00203-XGoogle Scholar
  17. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47. doi:nnano.2009.314Google Scholar
  18. Craig DQ (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231(2):131–144. doi:S0378517301008912Google Scholar
  19. des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral elivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27. doi:S0168-3659(06)00402-0Google Scholar
  20. Duzgune, Scedil, Nir S (1999) Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev 40(1–2):3–18. doi:S0169409X9900037XGoogle Scholar
  21. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647CrossRefGoogle Scholar
  22. Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biochem Pharmacol 58(3):173–182. doi: 10.1016/j.biopha.2004.02.001 Google Scholar
  23. Hatanaka J, Kimura Y, Lai-Fu Z, Onoue S, Yamada S (2008) Physicochemical and pharmacokinetic characterization of water-soluble Coenzyme Q(10) formulations. Int J Pharm 363(1–2):112–117. doi:S0378-5173(08)00523-1Google Scholar
  24. Hertz N, Lister RE (2009) Improved survival in patients with end-stage cancer treated with coenzyme Q(10) and other antioxidants: a pilot study. J Int Med Res 37(6):1961–1971CrossRefPubMedGoogle Scholar
  25. Hsu C-H, Cui Z, Mumper RJ, Jay M (2003) Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors. AAPS PharmSciTech 4(3):24–35CrossRefPubMedCentralGoogle Scholar
  26. Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–G417CrossRefGoogle Scholar
  27. Hyson HC, Kieburtz K, Shoulson I, McDermott M, Ravina B, de Blieck EA, Cudkowicz ME, Ferrante RJ, Como P, Frank S, Zimmerman C, Ferrante K, Newhall K, Jennings D, Kelsey T, Walker F, Hunt V, Daigneault S, Goldstein M, Weber J, Watts A, Beal MF, Browne SE, Metakis LJ (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects. Mov Disord 25(12):1924–1928. doi: 10.1002/mds.22408 CrossRefPubMedGoogle Scholar
  28. Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y (2000) Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol 5(1):77–85. doi: 10.1081/PDT-100100522 CrossRefPubMedGoogle Scholar
  29. Kommuru TR, Gurley B, Khan MA, Reddy IK (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212(2):233–246. doi:S0378517300006141Google Scholar
  30. Kumar A, Kaur H, Devi P, Mohan V (2009) Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther 124(3):259–268. doi:S0163-7258(09)00142-9Google Scholar
  31. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18. doi:S0927-7765(09)00411-1Google Scholar
  32. Lai F, Wissing SA, Maller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10–E18CrossRefPubMedCentralGoogle Scholar
  33. Lee WC, Tsai TH (2010) Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application. Int J Pharm 395(1–2):78–83. doi:S0378-5173(10)00349-2Google Scholar
  34. Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60CrossRefPubMedGoogle Scholar
  35. Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26(3):250–254. doi:S0899-9007(09)00344-XGoogle Scholar
  36. Liu TM, Musinski LD, Patel PR, 2007 Gallimore AD Nanoparticle electric propulsion for space exploration in space technology and applications. In: International Forum STAIF, AlbuquerqueGoogle Scholar
  37. Menuel SP, Joly J-P, Courcot B, Elysae J, Ghermani N-E, Marsura A (2007) Synthesis and inclusion ability of a bis-cyclodextrin pseudo-cryptand towards Busulfan anticancer agent. Tetrahedron 63(7):1706–1714CrossRefGoogle Scholar
  38. Miles MV (2007) The uptake and distribution of coenzyme Q (10). Mitochondrion 7:S72–S77CrossRefPubMedGoogle Scholar
  39. Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (London) 4(1):105–118. doi: 10.2217/17435889.4.1.105 CrossRefGoogle Scholar
  40. Nepal PR, Han HK, Choi HK (2010a) Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int J Pharm 383(1–2):147–153. doi:S0378-5173(09)00692-9Google Scholar
  41. Nepal PR, Han HK, Choi HK (2010b) Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q(10). Eur J Pharm Sci 39(4):224–232. doi:S0928-0987(09)00360-1Google Scholar
  42. Nicolson GL, Conklin KA (2008) Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis 25(2):161–169. doi: 10.1007/s10585-007-9129-z CrossRefPubMedGoogle Scholar
  43. Niibori K, Yokoyama H, Crestanello JA, Whitman GJR (1998) Acute administration of liposomal coenzyme Q 10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury. J Surg Res 79(2):141–145CrossRefPubMedGoogle Scholar
  44. Onoue S, Uchida A, Kuriyama K, Nakamura T, Seto Y, Kato M, Hatanaka J, Tanaka T, Miyoshi H, Yamada S (2012) Novel solid self-emulsifying drug delivery system of coenzyme Q(1)(0) with improved photochemical and pharmacokinetic behaviors. Eur J Pharm Sci 46(5):492–499. doi:S0928-0987(12)00169-8Google Scholar
  45. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:nnano.2007.387Google Scholar
  46. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705. doi:S0957-4484(08)74395-2Google Scholar
  47. Piao H, Ouyang M, Xia D, Quan P, Xiao W, Song Y, Cui F (2011) In vitro-in vivo study of CoQ10-loaded lipid nanoparticles in comparison with nanocrystals. Int J Pharm 419(1–2):255–259. doi:S0378-5173(11)00647-8Google Scholar
  48. Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25(1):47–58CrossRefGoogle Scholar
  49. Roland L, Gagne A, Belanger MC, Boutet M, Berthiaume L, Fraser WD, Julien P, Bilodeau JF (2010) Existence of compensatory defense mechanisms against oxidative stress and hypertension in preeclampsia. Hypertens Pregnancy 29(1):21–37. doi: 10.3109/10641950902777689 CrossRefPubMedGoogle Scholar
  50. Sachdanandam P (2008) Antiangiogenic and hypolipidemic activity of coenzyme Q10 supplementation to breast cancer patients undergoing Tamoxifen therapy. Biofactors 32(1–4):151–159CrossRefPubMedGoogle Scholar
  51. Safar A, Dellimore MC (2007) The effect of povidone iodine flush versus drops on conjunctival colonization before intravitreal injections. Int Ophthalmol 27(5):307–312. doi: 10.1007/s10792-007-9073-6 CrossRefPubMedGoogle Scholar
  52. Safarinejad MR (2009) Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol 182(1):237–248. doi:S0022-5347(09)00542-4Google Scholar
  53. Santos GCD, Antunes LNMG, Santos ACD, Bianchi MDLP (2009) Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases. Braz J Pharm Sci 45(4):607–618CrossRefGoogle Scholar
  54. Schwarz JC, Baisaeng N, Hoppel M, Low M, Keck CM, Valenta C (2013) Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 447(1–2):213–217. doi:S0378-5173(13)00181-6Google Scholar
  55. Serajuddin AT (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88(10):1058–1066. doi:S0022-3549(15)50893-9Google Scholar
  56. Shao Y, Yang L, Han HK (2015) TPGS-chitosome as an effective oral delivery system for improving the bioavailability of Coenzyme Q10. Eur J Pharm Biopharm 89:339–346. doi:S0939-6411(14)00381-6Google Scholar
  57. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20. doi:S0168365900003394Google Scholar
  58. Speiser B (2008) Nanoparticles inorganic production: in issues and opinions. In: Proccdings of the 16th IFOAM Organic World Congress, June 18–20, Modena, ItalyGoogle Scholar
  59. Spindler M, Beal MF, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597–610PubMedPubMedCentralGoogle Scholar
  60. Stratulat I, Britten M, Salmieri S, St-Gelais D, Champagne CP, Fustier P, Lacroix M (2013) Encapsulation of coenzyme Q10 in a simple emulsion-based nutraceutical formulation and application in cheese manufacturing. Food Chem 141(3):2707-2712. doi:S0308-8146(13)00642-0Google Scholar
  61. Swarnakar NK, Jain AK, Singh RP, Godugu C, Das M, Jain S (2011) Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials 32(28):6860–6874. doi:S0142-9612(11)00650-8Google Scholar
  62. Swarnakar NK, Thanki K, Jain S (2014) Enhanced antitumor efficacy and counterfeited cardiotoxicity of combinatorial oral therapy using Doxorubicin- and Coenzyme Q10-liquid crystalline nanoparticles in comparison with intravenous Adriamycin. Nanomedicine 10(6):1231–1241. doi:S1549-9634(14)00121-XGoogle Scholar
  63. Tang B, Cheng G, Gu JC, Xu CH (2008) Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today 13(13–14):606–612. doi:S1359-6446(08)00146-3Google Scholar
  64. Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698CrossRefPubMedGoogle Scholar
  65. Teran E, Racines-Orbe M, Vivero S, Escudero C, Molina G, Calle A (2003) Preeclampsia is associated with a decrease in plasma coenzyme Q10 levels. Free Radic Biol Med 35(11):1453–1456. doi:S0891584903005409Google Scholar
  66. Terao K, Nakata D, Fukumi H, Schmid G, Arima H, Hirayama F, Uekama K (2006) Enhancement of oral bioavailability of coenzyme Q10 by complexation with cyclodextrin in healthy adults. Nutr Res 26(10):503–508CrossRefGoogle Scholar
  67. Thatiparti TR, Shoffstall AJ, von Recum HA (2010) Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 31(8):2335–2347. doi:S0142-9612(09)01331-3Google Scholar
  68. Trauschke T, Werner H, Gerlinger T (2009) Diagnostic procedures and frequency of dementia. A prospective study in the daily routine of a geriatric hospital (PAOLA study). Z Gerontol Geriatr 42(5):385–390. doi: 10.1007/s00391-009-0043-7 CrossRefPubMedGoogle Scholar
  69. Verma DD, Hartner WC, Thakkar V, Levchenko TS, Torchilin VP (2007) Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 24(11):2131–2137. doi: 10.1007/s11095-007-9334-0 CrossRefPubMedGoogle Scholar
  70. Wadke DA, Serajuddin ATM, Jacobson H (1989) Preformulation testing. Pharmaceutical Dosage Forms: Tablets 1:1–73Google Scholar
  71. Wyman M, Leonard M, Morledge T (2010) Coenzyme Q10: a therapy for hypertension and statin-induced myalgia? Cleve Clin J Med 77(7):435–442. doi:77/7/435Google Scholar
  72. Xia F, Jin H, Zhao Y, Guo X (2012) Preparation of coenzyme Q10 liposomes using supercritical anti-solvent technique. J Microencapsul 29(1):21–29. doi: 10.3109/02652048.2011.629742 CrossRefPubMedGoogle Scholar
  73. Xu S, Zhao B, He D (2015) Synthesis of highly dispersed nanoscaled CoQ 10 liposome by supercritical fluid. Mater Lett 142:283–286. doi: 10.1016/j.matlet.2014.12.070 CrossRefGoogle Scholar
  74. Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, Fu D (2011) Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 37(8):633–642. doi:S0305-7372(11)00022-3Google Scholar
  75. Zhao X, Li L, Wang Z (2006) Chemoprevention of breast cancer: current status and future prospects. Front Biosci 11:2249–2256. doi: 10.2741/1967 CrossRefPubMedGoogle Scholar
  76. Zhou H, Zhang J, Jin Q, Liu G, Long Y, Duan M, Xia Q (2013a) Targeting of coenzyme Q10 via d-alpha-tocopheryl polyethylene glycol 1000 succinate-based nanoemulsion to the heart. Mater Lett 109:20–22. doi: 10.1016/j.matlet.2013.07.057 CrossRefGoogle Scholar
  77. Zhou H, Zhang J, Long Y, Liu G, Duan M, Xia Q (2013b) Improvement of the oral bioavailability of coenzyme Q10 with lecithin nanocapsules. J Nanosci Nanotechnol 13(1):706–710. doi: 10.1166/jnn.2013.7089 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shweta Paroha
    • 1
  • Arvind K. Singh Chandel
    • 2
  • Ravindra Dhar Dubey
    • 3
    Email author
  1. 1.School of Pharmaceutical SciencesSiksha O Anushandhan UniversityBhubaneswarIndia
  2. 2.Reverse Osmosis Membrane DivisionCentral Salt and Marine Chemicals Research InstituteGujaratIndia
  3. 3.Formulation and Drug Delivery DivisionCSIR-Indian Institute of Integrative MedicineJammuIndia

Personalised recommendations