Advertisement

Reverse Micelles for Nanoparticle Synthesis and Biomolecule Separation

  • Ram Saran Chaurasiya
  • H. Umesh HebbarEmail author
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)

Abstract

Reverse micelles are used for the selective separation and purification of biomolecules, and for the synthesis of nanoparticles. Reverse micelles are nanometer-size droplets of aqueous phase, stabilized by surfactants in an organic phase. Reverse micellar systems have been developed using various organic and aqueous phases and surfactants. Nanometer-sized aqueous systems are used to carry out specific reactions for the development of materials of controlled size and shape. The size of reverse micelles is one of the parameters for controlling the size of nanomaterial during nanomaterial synthesis. The size of reverse micelles increases with an increase in water content, which results in larger nanoparticle. Reverse micelles are also used as nanoreactors for nanoparticle synthesis because they increase the reaction rate and the distribution of nanoparticles is more uniform. Here we review fundamental principles of formation of reverse micelles; the effects of reverse micellar system components on the size of reverse micelles; the effect of process parameters on selectivity and yield; the synthesis of nanoparticles using reverse micelles. The chapter also discusses the effect of process parameters such as type of surfactant and solvent, use of ionic liquids and temperature on the synthesis as well as properties of nanoparticles.

Keywords

Reverse micelles Nanoparticle Nanoreactor Biomolecule Surfactant Solvent Ionic liquid Synthesis Particle size Separation 

Notes

Acknowledgements

The first author would like to thank CSIR, New Delhi, for the award of Senior Research Fellowship. Authors wish to thank the Director, CSIR-CFTRI for the encouragement and support.

References

  1. Adhikari A, Sahu K, Dey S, Ghosh S, Mandal U, Bhattacharyya K (2007) Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence. J Phys Chem B 111(44):12809–12816PubMedCrossRefGoogle Scholar
  2. Agazzi FM, Rodriguez J, Falcone RD, Silber JJ, Correa NM (2013) PRODAN dual emission feature to monitor BHDC interfacial properties changes with the external organic solvent composition. Langmuir 29(11):3556–3566PubMedCrossRefGoogle Scholar
  3. Agazzi FM, Correa NM, Rodriguez J (2014) Molecular Dynamics Simulation of Water/BHDC Cationic Reverse Micelles. Structural Characterization, Dynamical Properties, and Influence of Solvent on Intermicellar Interactions. Langmuir 30(32):9643–9653PubMedCrossRefGoogle Scholar
  4. Agnoli F, Zhou WL, O’Connor CJ (2001) Synthesis of Cubic Antiferromagnetic KMnF ~ 3 Nanoparticles Using Reverse Micelles and Their Self-Assembly. Adv Mater 13(22):1697CrossRefGoogle Scholar
  5. Arriagada F, Osseo-Asare K (1995) Synthesis of nanosize silica in aerosol OT reverse microemulsions. J Colloid Interface Sci 170(1):8–17CrossRefGoogle Scholar
  6. Bhavya SG, Priyanka BS, Rastogi NK (2012) Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing. Biotechnol Prog 28(6):1542–1550PubMedCrossRefGoogle Scholar
  7. Blach D, Pessêgo M, Silber JJ, Correa NM, García-Río L, Falcone RD (2014) Ionic Liquids Entrapped in Reverse Micelles as Nanoreactors for Bimolecular Nucleophilic Substitution Reaction. Effect of the Confinement on the Chloride Ion Availability. Langmuir 30(41):12130–12137PubMedCrossRefGoogle Scholar
  8. Bru R, Sanchez-Ferrer A, Garcia-Carmona F (1989) A theoretical study on the expression of enzymic activity in reverse micelles. Biochem J 259:355–361PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bu G, Liu H, Chen F, Liu K, Yang Y, Gao Y (2012) Effects of different factors on the forward extraction of soy protein in reverse micelle systems. Afr J Biotechnol 11(28):7247–7257Google Scholar
  10. Bürglová K, Hlaváč J, Bartlett JR (2015) Synthesis of sol–gel silica particles in reverse micelles with mixed-solvent polar cores: tailoring nanoreactor structure and properties. J Nanopart Res 17(7):1–17CrossRefGoogle Scholar
  11. Carlson A, Nagarajan R (1992) Release and recovery of porcine pepsin and bovine chymosin from reverse micelles: a new technique based on isopropyl alcohol addition. Biotechnol Prog 8(1):85–90PubMedCrossRefGoogle Scholar
  12. Carpenter EE, Seip CT, O’Connor CJ (1999) Magnetism of nanophase metal and metal alloy particles formed in ordered phases. J Appl Phys 85(8):5184–5186CrossRefGoogle Scholar
  13. Cavallaro G, Lazzara G, Milioto S, Parisi F (2015) Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion. Langmuir 31(27):7472–7478PubMedCrossRefGoogle Scholar
  14. Chaurasiya RS, Hebbar HU (2013) Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Sep Purif Technol 111:90–97CrossRefGoogle Scholar
  15. Chen D-H, Chen C-J (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12(5):1557–1562CrossRefGoogle Scholar
  16. Chen K, Zhao K (2015) Dielectric analysis on the phase behavior of ionic liquid-containing nonaqueous microemulsions. Colloid Polym Sci 293(3):833–840CrossRefGoogle Scholar
  17. Correa NM, Pires PAR, Silber JJ, El Seoud OA (2005) Real structure of formamide entrapped by AOT nonaqueous reverse micelles: FT-IR and 1H NMR studies. J Phys Chem B 109(44):21209–21219PubMedCrossRefGoogle Scholar
  18. Dekker M (1990) Enzyme recovery using reversed micelles. Landbouwuniversiteit te WageningenGoogle Scholar
  19. Dhaneshwar AD, Chaurasiya RS, Hebbar HU (2014) Process optimization for reverse micellar extraction of stem bromelain with a focus on back extraction. Biotechnol Prog 30:845–855PubMedCrossRefGoogle Scholar
  20. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74(10):1227CrossRefGoogle Scholar
  21. Durantini AM, Falcone RD, Silber JJ, Correa NM (2009) Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles. ChemPhysChem 10(12):2034–2040PubMedCrossRefGoogle Scholar
  22. Durantini AM, Falcone RD, Silber JJ, Correa NM (2011) A new organized media: glycerol: N, N-dimethylformamide mixtures/AOT/n-heptane reversed micelles. The effect of confinement on preferential solvation. J Phys Chem B 115(19):5894–5902PubMedCrossRefGoogle Scholar
  23. Eastoe J, Gold S, Rogers SE, Paul A, Welton T, Heenan RK, Grillo I (2005) Ionic liquid-in-oil microemulsions. J Am Chem Soc 127(20):7302–7303PubMedCrossRefGoogle Scholar
  24. Elles CG, Levinger NE (2000) Reverse micelles solubilizing DMSO and DMSO/water mixtures. Chem Phys Lett 317(6):624–630CrossRefGoogle Scholar
  25. Esmaeili N, Kazemian H, Bastani D (2011) Synthesis of nano particles of LTA zeolite by means of microemulsion technique. Iran J Chem Chem Eng Mini Review 30(2)Google Scholar
  26. Esumi K, Shiratori M, Ishizuka H, Tano T, Torigoe K, Meguro K (1991) Preparation of bimetallic palladium-platinum colloids in organic solvent by solvent extraction-reduction. Langmuir 7(3):457–459CrossRefGoogle Scholar
  27. Falcone RD, Correa NM, Silber JJ (2009) On the formation of new reverse micelles: A comparative study of benzene/surfactants/ionic liquids systems using UV− visible absorption spectroscopy and dynamic light scattering. Langmuir 25(18):10426–10429PubMedCrossRefGoogle Scholar
  28. Fan D, Zheng P, Ma Y, Yin T, Zhao J, Shen W (2015) Effects of water content and chain length of n-alkane on the interaction enthalpy between the droplets in water/sodium bis (2-ethylhexyl)-sulfosuccinate/n-alkane microemulsions. Soft Matter 11(14):2885–2892PubMedCrossRefGoogle Scholar
  29. Feng J, Zhang C-P (2006) Preparation of Cu–Ni alloy nanocrystallites in water-in-oil microemulsions. J Colloid Interface Sci 293(2):414–420PubMedCrossRefGoogle Scholar
  30. Fileti AMF, Fischer GA, Santana JCC, Tambourgi EB (2009) Batch and continuous extraction of bromelain enzyme by reversed micelles. Braz Arch Biol Technol 52(5):1225–1234CrossRefGoogle Scholar
  31. Franqueville E, Stamatis H, Loutrari H, Friboulet A, Kolisis F (2002) Studies on the catalytic behaviour of a cholinesterase-like abzyme in an AOT microemulsion system. J Biotechnol 97(2):177–182PubMedCrossRefGoogle Scholar
  32. Gaikaiwari RP, Wagh SA, Kulkarni BD (2012) Efficient lipase purification using reverse micellar extraction. Bioresour Technol 108:224–230PubMedCrossRefGoogle Scholar
  33. Gaikar VG, Kulkarni MS (2001) Selective reverse micellar extraction of penicillin acylase from E coli. J Chem Technol Biotechnol 76(7):729–736CrossRefGoogle Scholar
  34. Gao H, Li J, Han B, Chen W, Zhang J, Zhang R, Yan D (2004) Microemulsions with ionic liquid polar domains. Phys Chem Chem Phys 6(11):2914–2916CrossRefGoogle Scholar
  35. Gao Y, Zhang J, Xu H, Zhao X, Zheng L, Li X, Yu L (2006) Structural Studies of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/p-Xylene Ionic Liquid Microemulsions. ChemPhysChem 7(7):1554–1561PubMedCrossRefGoogle Scholar
  36. Gao Y, Li N, Zheng L, Bai X, Yu L, Zhao X, Zhang J, Zhao M, Li Z (2007) Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene. J Phys Chem B 111(10):2506–2513PubMedCrossRefGoogle Scholar
  37. Gao Y, Li N, Hilfert L, Zhang S, Zheng L, Yu L (2009) Temperature-induced microstructural changes in ionic liquid-based microemulsions. Langmuir 25(3):1360–1365PubMedCrossRefGoogle Scholar
  38. Ghosh S (2001) Surface chemical and micellar properties of binary and ternary surfactant mixtures (cetyl pyridinium chloride, Tween-40, and Brij-56) in an aqueous medium. J Colloid Interface Sci 244(1):128–138CrossRefGoogle Scholar
  39. Goto M, Hashimoto Y, Ta F, Ono T, Furusaki S (2000) Important parameters affecting efficiency of protein refolding by reversed micelles. Biotechnol Prog 16(6):1079–1085PubMedCrossRefGoogle Scholar
  40. Haghtalab A, Osfouri S (2004) A simple complexation model and the experimental data for protein extraction using reverse micellar systems. Iran J Biotechnol 2:106–112Google Scholar
  41. Hashimoto Y, Ono T, Goto M, Hatton TA (1998) Protein refolding by reversed micelles utilizing solid-liquid extraction technique. Biotechnol Bioeng 57(5):620–623PubMedCrossRefGoogle Scholar
  42. He S, Shi J, Walid E, Ma Y, Xue SJ (2013) Extraction and purification of a lectin from small black kidney bean (Phaseolus vulgaris) using a reversed micellar system. Process Biochem 48(4):746–752CrossRefGoogle Scholar
  43. Hebbar HU, Raghavarao KSMS (2007) Extraction of bovine serum albumin using nanoparticulate reverse micelles. Process Biochem 42(12):1602–1608CrossRefGoogle Scholar
  44. Hebbar HU, Sumana B, Raghavarao KSMS (2008) Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour Technol 99(11):4896–4902CrossRefGoogle Scholar
  45. Hebbar HU, Hemavathi AB, Sumana B, Raghavarao KSMS (2011) Reverse Micellar Extraction of Bromelain from Pineapple (Ananas comosus L. Merryl) Waste: Scale-up, Reverse Micelles Characterization and Mass Transfer Studies. Sep Sci Technol 46(10):1656–1664CrossRefGoogle Scholar
  46. Hemavathi AB, Hebbar HU, Raghavarao KSMS (2007) Reverse micellar extraction of bromelain from Ananas comosus L. Merryl Journal of chemical technology and biotechnology 82(11):985–992CrossRefGoogle Scholar
  47. Hieda J, Saito N, Takai O (2008) Size-regulated gold nanoparticles fabricated by a discharge in reverse micelle solutions. Surf Coat Technol 202(22):5343–5346CrossRefGoogle Scholar
  48. Hong D-P, Kuboi R, Komasawa I (1997) Extraction of proteins and polymers using reverse micelles and percolation process. Korean J Chem Eng 14(5):334–340CrossRefGoogle Scholar
  49. Hong D-P, Lee S-S, Kuboi R (2000) Conformational transition and mass transfer in extraction of proteins by AOT–alcohol–isooctane reverse micellar systems. J Chromatogr B Biomed Sci Appl 743(1):203–213PubMedCrossRefGoogle Scholar
  50. Hong S-C, Park K-M, Son Y-H, Jung H-S, Kim K, Choi SJ, Chang P-S (2015) AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase. Food Chem 179:263–269PubMedCrossRefGoogle Scholar
  51. Ingelsten HH, Bagwe R, Palmqvist A, Skoglundh M, Svanberg C, Holmberg K, Shah DO (2001) Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions. J Colloid Interface Sci 241(1):104–111PubMedCrossRefGoogle Scholar
  52. Kadam KL (1986) Reverse micelles as a bioseparation tool. Enzym Microb Technol 8(5):266–273CrossRefGoogle Scholar
  53. Karanikolos GN, Alexandridis P, Itskos G, Petrou A, Mountziaris T (2004) Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique. Langmuir 20(3):550–553PubMedCrossRefGoogle Scholar
  54. Kilikian B, Bastazin M, Minami N, Gonçalves E, Junior A (2000) Liquid-liquid extraction by reversed micelles in biotechnological processes. Braz J Chem Eng 17(1):29–38CrossRefGoogle Scholar
  55. Kinugasa T, Kondo A, Mouri E, Ichikawa S, Nakagawa S, Nishii Y, Watanabe K, Takeuchi H (2003) Effects of ion species in aqueous phase on protein extraction into reversed micellar solution. Sep Purif Technol 31(3):251–259CrossRefGoogle Scholar
  56. Kitchens CL, McLeod MC, Roberts CB (2005) Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions. Langmuir 21(11):5166–5173PubMedCrossRefGoogle Scholar
  57. Krei G, Meyer U, Börner B, Hustedt H (1995) Extraction of alpha-amylase using BDBAC-reversed micelles. Bioseparation 5(3):175–183Google Scholar
  58. Krishna SH, Srinivas ND, Raghavarao KSMS, Karanth NG (2002) Reverse micellar extraction for downstream processing of proteins/enzymes. In: History and trends in bioprocessing and biotransformation. Springer, pp 119–183Google Scholar
  59. Lee S-S, Lee B-K, Choi J-S, Lee J-P (2001) Effect of alcohol addition on back-extraction of BSA and cytochrome c using AOT reverse micellar system. Bulletin-Korean chemical society 22(8):897–902Google Scholar
  60. Lee B-K, Hong D-P, Lee S-S, Kuboi R (2004a) Analysis of protein back-extraction processes in alcohol-and carboxylic acid-mediated AOT reverse micellar systems based on structural changes of proteins and reverse micelles. Biochem Eng J 22(1):71–79CrossRefGoogle Scholar
  61. Lee B-K, Hong D-P, Lee S-S, Kuboi R (2004b) Evaluation of carboxylic acid-induced formation of reverse micelle clusters: comparison of the effects of alcohols on reverse micelles. Biochem Eng J 21(1):11–18CrossRefGoogle Scholar
  62. Lemyre J-L, Ritcey AM (2005) Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chem Mater 17(11):3040–3043CrossRefGoogle Scholar
  63. Lemyre J-L, Ritcey AM (2010) Characterization of a Reverse Micellar System by 1H NMR. Langmuir 26(9):6250–6255PubMedCrossRefGoogle Scholar
  64. Lemyre J-L, Lamarre S, Beaupré A, Ritcey AM (2011) Mechanism of YF3 nanoparticle formation in reverse micelles. Langmuir 27(19):11824–11834PubMedCrossRefGoogle Scholar
  65. Leser ME, Luisi PL (1990) Application of reverse micelles for the extraction of amino acids and proteins. CHIMIA International Journal for Chemistry 44(9):270–282Google Scholar
  66. Leser ME, Mrkoci K, Luisi PL (1993) Reverse micelles in protein separation: The use of silica for the back-transfer process. Biotechnol Bioeng 41(4):489–492PubMedCrossRefGoogle Scholar
  67. Li F, Vipulanandan C, Mohanty KK (2003) Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf A Physicochem Eng Asp 223(1):103–112CrossRefGoogle Scholar
  68. Li J, Zhang J, Han B, Gao Y, Shen D, Wu Z (2006) Effect of ionic liquid on the polarity and size of the reverse micelles in supercritical CO2. Colloids Surf A Physicochem Eng Asp 279(1):208–212CrossRefGoogle Scholar
  69. Li N, Gao Y, Zheng L, Zhang J, Yu L, Li X (2007) Studies on the micropolarities of bmimBF4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy. Langmuir 23(3):1091–1097PubMedCrossRefGoogle Scholar
  70. Lisiecki I, Pileni M (2003) Synthesis of well-defined and low size distribution cobalt nanocrystals: the limited influence of reverse micelles. Langmuir 19(22):9486–9489CrossRefGoogle Scholar
  71. Liz-Marzán LM, Lado-Tourino I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12(15):3585–3589CrossRefGoogle Scholar
  72. Luisi PL (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew Chem Int Ed Engl 24(6):439–450CrossRefGoogle Scholar
  73. Luisi P, Giomini M, Ma P, Robinson B (1988) Reverse micelles as hosts for proteins and small molecules. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 947(1):209–246CrossRefGoogle Scholar
  74. Lv F-F, Zheng L-Q, Tung C-H (2005) Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm 301(1):237–246PubMedCrossRefGoogle Scholar
  75. Magno LM, Sigle W, van Aken PA, Angelescu DG, Stubenrauch C (2010) Microemulsions as reaction media for the synthesis of bimetallic nanoparticles: size and composition of particles. Chem Mater 22(23):6263–6271CrossRefGoogle Scholar
  76. Mandal S, Ghosh S, Banerjee C, Kuchlyan J, Banik D, Sarkar N (2013) A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J Phys Chem B 117(11):3221–3231PubMedCrossRefGoogle Scholar
  77. Mathew DS, Juang R-S (2005) Improved back extraction of papain from AOT reverse micelles using alcohols and a counter-ionic surfactant. Biochem Eng J 25(3):219–225CrossRefGoogle Scholar
  78. Mathew DS, Juang R-S (2007) Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Sep Purif Technol 53(3):199–215CrossRefGoogle Scholar
  79. Mitra RK, Paul BK (2005a) Effect of NaCl and temperature on the water solubilization behavior of AOT/nonionics mixed reverse micellar systems stabilized in IPM oil. Colloids Surf A Physicochem Eng Asp 255(1):165–180CrossRefGoogle Scholar
  80. Mitra RK, Paul BK (2005b) Investigation on percolation in conductance of mixed reverse micelles. Colloids Surf A Physicochem Eng Asp 252(2):243–259CrossRefGoogle Scholar
  81. Moniruzzaman M, Hayashi Y, Talukder MMR, Saito E, Kawanishi T (2006) Effect of aprotic solvents on the enzymatic activity of lipase in AOT reverse micelles. Biochem Eng J 30(3):237–244CrossRefGoogle Scholar
  82. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M (2010) Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation. Int J Pharm 400(1):243–250PubMedCrossRefGoogle Scholar
  83. Motlekar NA, Bhagwat SS (2001) Activity of horseradish peroxidase in aqueous and reverse micelles and back-extraction from reverse micellar phases. J Chem Technol Biotechnol 76(6):643–649CrossRefGoogle Scholar
  84. Nandini KE, Rastogi NK (2009) Reverse micellar extraction for downstream processing of lipase: effect of various parameters on extraction. Process Biochem 44(10):1172–1178CrossRefGoogle Scholar
  85. Natarajan U, Handique K, Mehra A, Bellare JR, Khilar KC (1996) Ultrafine metal particle formation in reverse micellar systems: effects of intermicellar exchange on the formation of particles. Langmuir 12(11):2670–2678CrossRefGoogle Scholar
  86. Nishiki T, Muto A, Kataoka T, Kato D (1995) Back extraction of proteins from reversed micellar to aqueous phase: partitioning behaviour and enrichment. The Chemical Engineering Journal and The Biochemical Engineering Journal 59(3):297–301CrossRefGoogle Scholar
  87. O’Connor CJ, Kolesnichenko V, Carpenter E, Sangregorio C, Zhou W, Kumbhar A, Sims J, Agnoli F (2001) Fabrication and properties of magnetic particles with nanometer dimensions. Synth Met 122(3):547–557CrossRefGoogle Scholar
  88. Ono T, Goto M, Nakashio F, Hatton TA (1996) Extraction behavior of hemoglobin using reversed micelles by dioleyl phosphoric acid. Biotechnol Prog 12(6):793–800PubMedCrossRefGoogle Scholar
  89. Paul S, Panda AK (2014) Combined phase behavior, dynamic light scattering, viscosity and spectroscopic investigations of a pyridinium-based ionic liquid-in-oil microemulsion. RSC Adv 4(61):32383–32390CrossRefGoogle Scholar
  90. Peng X, X-z Y, G-m Z, H-j H, Zhong H, Z-f L, K-l C, Liang Y-s, Z-y P, Guo L-z (2012) Extraction and purification of laccase by employing a novel rhamnolipid reversed micellar system. Process Biochem 47(5):742–748CrossRefGoogle Scholar
  91. Pileni M-P, Zemb T, Petit C (1985) Solubilization by reverse micelles: solute localization and structure perturbation. Chem Phys Lett 118(4):414–420CrossRefGoogle Scholar
  92. Pinna N, Weiss K, Sack-Kongehl H, Vogel W, Urban J, Pileni MP (2001) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17(26):7982–7987CrossRefGoogle Scholar
  93. Porto T, Monteiro T, Moreira K, Lima-Filho J, Silva M, Porto A, Carneiro-da-Cunha M (2005) Liquid–liquid extraction of an extracellular alkaline protease from fermentation broth using aqueous two-phase and reversed micelles systems. World J Microbiol Biotechnol 21(5):655–659CrossRefGoogle Scholar
  94. Pramanik R, Sarkar S, Ghatak C, Rao VG, Sarkar N (2011) Ionic liquid containing microemulsions: probe by conductance, dynamic light scattering, diffusion-ordered spectroscopy NMR measurements, and study of solvent relaxation dynamics. J Phys Chem B 115(10):2322–2330PubMedCrossRefGoogle Scholar
  95. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products the example of ionic liquids. Chem Rev 107(6):2183–2206PubMedCrossRefGoogle Scholar
  96. Rao VG, Mandal S, Ghosh S, Banerjee C, Sarkar N (2012) Ionic Liquid-in-Oil Microemulsions Composed of Double Chain Surface Active Ionic Liquid as a Surfactant: Temperature Dependent Solvent and Rotational Relaxation Dynamics of Coumarin-153 in [Py][TF2N]/[C4mim][AOT]/Benzene Microemulsions. J Phys Chem B 116(28):8210–8221PubMedCrossRefGoogle Scholar
  97. Rao VG, Mandal S, Ghosh S, Banerjee C, Sarkar N (2013) Phase boundaries, structural characteristics, and NMR spectra of ionic liquid-in-oil microemulsions containing double chain surface active ionic liquid: a comparative study. J Phys Chem B 117(5):1480–1493PubMedCrossRefGoogle Scholar
  98. Rojas O, Tiersch B, Rabe C, Stehle R, Hoell A, Arlt B, Koetz J (2013) Nonaqueous microemulsions based on N, N′-alkylimidazolium alkylsulfate ionic liquids. Langmuir 29(23):6833–6839PubMedCrossRefGoogle Scholar
  99. Sakai H, Kawahara H, Shimazaki M, Abe M (1998) Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition. Langmuir 14(8):2208–2212CrossRefGoogle Scholar
  100. Sakono M, Goto M, Furusaki S (2000) Refolding of cytochrome c using reversed micelles. J Biosci Bioeng 89(5):458–462PubMedCrossRefGoogle Scholar
  101. Sakono M, Maruyama T, Kamiya N, Goto M (2004) Refolding of denatured carbonic anhydrase B by reversed micelles formulated with nonionic surfactant. Biochem Eng J 19(3):217–220CrossRefGoogle Scholar
  102. Setapar M, Hamidah S, Shiew WL, Toorisaka E, Goto M, Furusaki S, Mat H (2008) Reverse micelle extraction of antibiotics. Jurnal Teknologi F 49F:69–79Google Scholar
  103. Setua P, Chakraborty A, Seth D, Bhatta MU, Satyam P, Sarkar N (2007) Synthesis, optical properties, and surface enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. J Phys Chem C 111(10):3901–3907CrossRefGoogle Scholar
  104. Setua P, Pramanik R, Sarkar S, Ghatak C, Das S, Sarkar N (2010) Synthesis of silver nanoparticle inside the nonaqueous ethylene glycol reverse micelle and a comparative study to show the effect of the nanoparticle on the reverse micellar aggregates through solvation dynamics and rotational relaxation measurements. J Phys Chem B 114(22):7557–7564PubMedCrossRefGoogle Scholar
  105. Setua P, Ghatak C, Rao VG, Das S, Sarkar N (2012) Dynamics of Solvation and Rotational Relaxation of Coumarin 480 in Pure Aqueous-AOT Reverse Micelle and Reverse Micelle Containing Different-Sized Silver Nanoparticles Inside Its Core: A Comparative Study. J Phys Chem B 116(12):3704–3712PubMedCrossRefGoogle Scholar
  106. Sharma S, Pal N, Chowdhury PK, Sen S, Ganguli AK (2012) Understanding growth kinetics of nanorods in microemulsion: A combined fluorescence correlation spectroscopy, dynamic light scattering, and electron microscopy study. J Am Chem Soc 134(48):19677–19684PubMedCrossRefGoogle Scholar
  107. Shi W, Hong L, Damodaran K, Nulwala HB, Luebke DR (2014) Molecular Simulation and Experimental Study of CO2 Absorption in Ionic Liquid Reverse Micelle. J Phys Chem B 118(48):13870–13881PubMedCrossRefGoogle Scholar
  108. Shin Y-O, Weber ME, Vera JH (2003) Effect of salt and volume ratio on the reverse micellar extraction of lysozyme using DODMAC. Fluid Phase Equilib 207(1):155–165CrossRefGoogle Scholar
  109. Shrestha LK, Dulle M, Glatter O, Aramaki K (2010) Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: growth control by headgroup size. Langmuir 26(10):7015–7024PubMedCrossRefGoogle Scholar
  110. Silva OF, Correa NM, Silber JJ, de Rossi RH, Fernández MA (2014) Supramolecular Assemblies Obtained by Mixing Different Cyclodextrins and AOT or BHDC Reverse Micelles. Langmuir 30(12):3354–3362PubMedCrossRefGoogle Scholar
  111. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310PubMedCrossRefGoogle Scholar
  112. Streitner N, Voß C, Flaschel E (2007) Reverse micellar extraction systems for the purification of pharmaceutical grade plasmid DNA. J Biotechnol 131(2):188–196PubMedCrossRefGoogle Scholar
  113. Subramanian R, Ichikawa S, Nakajima M, Kimura T, Maekawa T (2001) Characterization of phospholipid reverse micelles in relation to membrane processing of vegetable oils. Eur J Lipid Sci Technol 103(2):93–97CrossRefGoogle Scholar
  114. Sun X-H, Zhu K-X, Zhou H-M (2008) Protein extraction from defatted wheat germ by reverse micelles: Optimization of the forward extraction. J Cereal Sci 48(3):829–835CrossRefGoogle Scholar
  115. Tago T, Shibata Y, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Synthesis of silica-coated rhodium nanoparticles in reversed micellar solution. J Mater Sci 37(5):977–982CrossRefGoogle Scholar
  116. Tago T, Tashiro S, Hashimoto Y, Wakabayashi K, Kishida M (2003) Synthesis and optical properties of SiO2-coated CeO2 nanoparticles. J Nanopart Res 5(1–2):55–60CrossRefGoogle Scholar
  117. Teruoki Tago V, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J Am Ceram Soc 85(9):2188–2194CrossRefGoogle Scholar
  118. Thudi L, Jasti LS, Swarnalatha Y, Fadnavis NW, Mulani K, Deokar S, Ponrathnam S (2012) Enzyme immobilization on epoxy supports in reverse micellar media: Prevention of enzyme denaturation. J Mol Catal B Enzym 74(1):54–62CrossRefGoogle Scholar
  119. Tojo C, Vila-Romeu N (2014) Kinetic Study on the Formation of Bimetallic Core-Shell Nanoparticles via Microemulsions. Materials 7(11):7513CrossRefGoogle Scholar
  120. Tojo C, Blanco M, Rivadulla F, López-Quintela M (1997) Kinetics of the formation of particles in microemulsions. Langmuir 13(7):1970–1977CrossRefGoogle Scholar
  121. Tojo C, De Dios M, López-Quintela M (2009) On the structure of bimetallic nanoparticles synthesized in microemulsions. J Phys Chem C 113(44):19145–19154CrossRefGoogle Scholar
  122. Tojo C, de Dios M, Buceta D, López-Quintela M (2014) Cage-like effect in Au–Pt nanoparticle synthesis in microemulsions: a simulation study. Phys Chem Chem Phys 16(36):19720–19731PubMedCrossRefGoogle Scholar
  123. Uskoković V, Drofenik M (2005) Synthesis of materials within reverse micelles. Surf Rev Lett 12(02):239–277CrossRefGoogle Scholar
  124. Villa CC, Silber JJ, Correa NM, Falcone RD (2014) Effect of the Cationic Surfactant Moiety on the Structure of Water Entrapped in Two Catanionic Reverse Micelles Created from Ionic Liquid-Like Surfactants. ChemPhysChem 15(14):3097–3109PubMedCrossRefGoogle Scholar
  125. Wei J, Su B, Yang J, Xing H, Bao Z, Yang Y, Ren Q (2011) Water solubilization capacity and volume-induced percolation of sodium bis (2-ethylhexyl) sulfosuccinate microemulsions in the presence of 1-alkyl-3-methylimidazolium chloride ionic liquids. J Chem Eng Data 56(9):3698–3702CrossRefGoogle Scholar
  126. Weihua W, Xuelin T, Kai C, Gengyu C (2006) Synthesis and characterization of Pt–Cu bimetallic alloy nanoparticles by reverse micelles method. Colloids Surf A Physicochem Eng Asp 273(1):35–42CrossRefGoogle Scholar
  127. Wolbert RB, Hilhorst R, Voskuilen G, Nachtegaal H, Dekker M, Bijsterbosch B (1989) Protein transfer from an aqueous phase into reversed micelles. European Journal of Biochemistry 184 (627633.11)Google Scholar
  128. Wolf R, Luisi PL (1979) Micellar solubilization of enzymes in hydrocarbon solvents, enzymatic activity and spectroscopic properties of ribonuclease in n-octane. Biochem Biophys Res Commun 89(1):209–217PubMedCrossRefGoogle Scholar
  129. Wu M-L, Chen D-H, Huang T-C (2001a) Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions. J Colloid Interface Sci 243(1):102–108CrossRefGoogle Scholar
  130. Wu M-L, Chen D-H, Huang T-C (2001b) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17(13):3877–3883CrossRefGoogle Scholar
  131. Wu H, Liu J, Ge M, Niu L, Zeng Y, Wang Y, Lv G, Wang L, Zhang G, Jiang J (2006) Preparation of monodisperse GeO2 nanocubes in a reverse micelle system. Chem Mater 18(7):1817–1820CrossRefGoogle Scholar
  132. Xi L, Lam Y (2007) Synthesis and characterization of CdSe nanorods using a novel microemulsion method at moderate temperature. J Colloid Interface Sci 316(2):771–778PubMedCrossRefGoogle Scholar
  133. Yener DO, Giesche H (2001) Synthesis of Pure and Manganese-, Nickel-, and Zinc-Doped Ferrite Particles in Water-in-Oil Microemulsions. J Am Ceram Soc 84(9):1987–1995CrossRefGoogle Scholar
  134. Yonezawa T, Toshima N (1995) Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters. J Chem Soc Faraday Trans 91(22):4111–4119CrossRefGoogle Scholar
  135. Yoo H, Pak J (2013) Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores. J Nanopart Res 15(5):1–10CrossRefGoogle Scholar
  136. Yu Y-c, Chu Y, Ji J-Y (2003) Study of the factors affecting the forward and back extraction of yeast-lipase and its activity by reverse micelles. J Colloid Interface Sci 267(1):60–64PubMedCrossRefGoogle Scholar
  137. Zhang W, Liu H, Chen J (2002) Forward and backward extraction of BSA using mixed reverse micellar system of CTAB and alkyl halides. Biochem Eng J 12(1):1–5CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)CSIR-Central Food Technological Research Institute (CSIR-CFTRI)MysoreIndia
  2. 2.CSIR-CFTRIMysoreIndia

Personalised recommendations