Genotoxicity of Nanomaterials in Food

  • Venkatraman ManickamEmail author
  • Ranjith Kumar Velusamy
  • Rajeeva Lochana
  • Amiti
  • Bhavapriya Rajendran
  • Tamizhselvi Ramasamy
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)


Nanomaterials are finding applications in the fields of food, agriculture, pharmaceuticals, catalytic industry, electronics and cosmetics. The use of nanomaterials in industries are widely appreciated due to their unique properties. Nonetheless, beside benefits, some nanomaterials are toxic. Nanomaterial Toxicity is often due to particular toxicokinetic and toxicodynamic properties, catalytic functions and inflammatory potential. Diverse genotoxic effects have been identified using different types of genotoxicity tests.

Here we review nanomaterials in food and pharmaceutical industries. We then discuss the genotoxicity of nanomaterials in food and health products. Toxic effects can be modified by functionalization, net particle reactivity, agglomeration and the functional environment.


Nanomaterials Genotoxicity Nanofood Food printing Supplements Inflammation Reactive oxygen species DNA-damage Oncogene activation Cell cycle arrest Cancer Clay minerals Food packaging 



This work was supported by the financial assistance in the form of research fund and research facilities provided by VIT University, India. RKV, RL, Amiti, BR are acknowledging VIT University, India, for providing research associateship.


  1. Adame D, Beall G (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552. doi: 10.1016/j.clay.2008.03.005 CrossRefGoogle Scholar
  2. Aditya NP, Ko S (2015) Solid lipid nanoparticles (SLNs): delivery vehicles for food bioactives. RSC Adv 5:30902–30911. doi: 10.1039/C4RA17127F CrossRefGoogle Scholar
  3. Aguilera JM (2014) Where is the nano in our foods? J Agric Food Chem 62:9953–9956PubMedCrossRefGoogle Scholar
  4. Ahuja T, Mir IA, Kumar D, Rajesh KD (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805. doi: 10.1016/j.biomaterials.2006.09.046 PubMedCrossRefGoogle Scholar
  5. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107. doi: 10.1016/j.lwt.2007.06.019 CrossRefGoogle Scholar
  6. Arshak K, Adley C, Moore E et al (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensors Actuators B Chem 126:226–231. doi: 10.1016/j.snb.2006.12.006 CrossRefGoogle Scholar
  7. Battal D, Celik A, Güler G et al (2014) SiO2 Nanoparticule-induced size-dependent genotoxicity – an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem Toxicol 0545:1–9. doi: 10.3109/01480545.2014.928721 Google Scholar
  8. Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62. doi: 10.1016/j.yrtph.2008.10.008 PubMedCrossRefGoogle Scholar
  9. Brown CJ, Lain S, Verma CS et al (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873. doi: 10.1038/nrc2763 PubMedCrossRefGoogle Scholar
  10. Carmona ER, Escobar B, Vales G, Marcos R (2015) Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat Res Toxicol Environ Mutagen 778:12–21. doi: 10.1016/j.mrgentox.2014.12.004 CrossRefGoogle Scholar
  11. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  12. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123:288–292. doi: 10.1016/j.ijfoodmicro.2007.12.017 PubMedCrossRefGoogle Scholar
  13. Chen T, Yan J, Li Y (2014a) Genotoxicity of titanium dioxide nanoparticles. Yao wu shi pin fen xi = J food drug Anal 22:95–104. doi: 10.1016/j.jfda.2014.01.008 Google Scholar
  14. Chen Z, Wang Y, Ba T et al (2014b) Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett 226:314–319. doi: 10.1016/j.toxlet.2014.02.020 PubMedCrossRefGoogle Scholar
  15. Christmann M, Kaina B (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 41:8403–8420. doi: 10.1093/nar/gkt635 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cushen M, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends Food Sci Technol 24:30–46. doi: 10.1016/j.tifs.2011.10.006 CrossRefGoogle Scholar
  17. Cveticanin J, Joksic G, Leskovac A et al (2010) Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 21:015102. doi: 10.1088/0957-4484/21/1/015102 PubMedCrossRefGoogle Scholar
  18. Dasgupta N, Ranjan S, Mundekkad D et al (2015a) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi: 10.1016/j.foodres.2015.01.005 CrossRefGoogle Scholar
  19. Dasgupta N, Ranjan S, Rajendran B et al (2015b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149CrossRefGoogle Scholar
  20. Dobrzyńska MM, Gajowik A, Radzikowska J et al (2014) Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91. doi: 10.1016/j.tox.2013.11.012 PubMedCrossRefGoogle Scholar
  21. Dowling AP (2004) Development of nanotechnologies. Mater Today 7:30–45CrossRefGoogle Scholar
  22. Driscoll KE, Deyo LC, Carter JM et al (1997) Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18:423–430. doi: 10.1093/carcin/18.2.423 PubMedCrossRefGoogle Scholar
  23. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. doi: 10.1016/j.jcis.2011.07.017 PubMedCrossRefGoogle Scholar
  24. EFSA Scientific Committee (2011) Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. In Vivo (Brooklyn) 9:1–68. doi: 10.2903/j.efsa.2011.2379 Google Scholar
  25. El Mahdy MM, Eldin TAS, Aly HS et al (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67:21–29. doi: 10.1016/j.etp.2014.09.005 PubMedCrossRefGoogle Scholar
  26. Eremeyev VA (2015) On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech 42:29–42. doi: 10.1007/s00707-015-1427-y Google Scholar
  27. European Food Safety Authority (2012) EFSA scientific network of risk assessment of nanotechnologies in food and feed. EFSA:1–10Google Scholar
  28. Fernández A, Cava D, Ocio MJ, Lagarón JM (2008) Perspectives for biocatalysts in food packaging. Trends Food Sci Technol 19:198–206. doi: 10.1016/j.tifs.2007.12.004 CrossRefGoogle Scholar
  29. Fortina P, Kricka LJ, Surrey S, Grodzinski P (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 23:168–173. doi: 10.1016/j.tibtech.2005.02.007 PubMedCrossRefGoogle Scholar
  30. Freire CSR, Silvestre AJD, Neto CP et al (2008) Composites based on acylated cellulose fibers and low-density polyethylene: effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos Sci Technol 68:3358–3364. doi: 10.1016/j.compscitech.2008.09.008 CrossRefGoogle Scholar
  31. Fu PP, Xia Q, Hwang H-M et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75. doi: 10.1016/j.jfda.2014.01.005 PubMedCrossRefGoogle Scholar
  32. Garber C (2006) Nanotechnology food coming to a fridge near you.
  33. Ghosh M, Manivannan J, Sinha S et al (2012) In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res Genet Toxicol Environ Mutagen 749:60–69. doi: 10.1016/j.mrgentox.2012.08.007 CrossRefGoogle Scholar
  34. Guo X, Chen T (2015) Progress in genotoxicity evaluation of engineered nanomaterials. In: nanomaterials-toxicity and risk assesment. pp 142–160Google Scholar
  35. Hartwig A (2013) Transport of nanoparticles to the brain: concern for neurotoxicity? Nanomater report. Wiley, Weinheim, pp 1–95Google Scholar
  36. Huang Y, Chen S, Bing X et al (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24:291–297. doi: 10.1002/pts.938 CrossRefGoogle Scholar
  37. International Council for Harmonisation (2012) S2(R1) genotoxicity testing and data interpretation for pharmaceuticals intended for human useGoogle Scholar
  38. Janaswamy S, Youngren SR (2012) Hydrocolloid-based nutraceutical delivery systems. Food Funct 3:503–507. doi: 10.1039/c2fo10281a PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jung S-K, Qu X, Aleman-Meza B et al (2015) Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol 150206135631007. doi: 10.1021/es5056462
  40. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi: 10.1016/j.tox.2009.08.016 PubMedCrossRefGoogle Scholar
  41. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673. doi: 10.1021/la701067r PubMedCrossRefGoogle Scholar
  42. Kansara K, Patel P, Shah D et al (2015) TiO 2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen 56:204–217. doi: 10.1002/em.21925 PubMedCrossRefGoogle Scholar
  43. Kim K-M, Kim H-M, Choi M-H et al (2014) Colloidal properties of surface coated colloidal silica nanoparticles in aqueous and physiological solutions. Sci Adv Mater 6:1573–1581CrossRefGoogle Scholar
  44. Knaapen AM, Albrecht C, Becker A et al (2002) DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation. Carcinogenesis 23:1111–1120. doi: 10.1093/carcin/23.7.1111 PubMedCrossRefGoogle Scholar
  45. Knaapen AM, Güngör N, Schins RPF et al (2006) Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21:225–236PubMedCrossRefGoogle Scholar
  46. Koeneman BA, Zhang Y, Hristovski K et al (2009) Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicol Vitr 23:955–962. doi: 10.1016/j.tiv.2009.05.007 CrossRefGoogle Scholar
  47. Krassenstein E (2014) U.S. Army looks into 3d printing food – could provide extra potent nutrients to soldiers in battle. In: 3D
  48. Kumar CSSR (2006) Nanomaterials – Toxicity, health and environmental issues, vol 5. Wiley, WeinheimGoogle Scholar
  49. Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87:1883–1900PubMedCrossRefGoogle Scholar
  50. Kumar A, Pandey AK, Singh SS et al (2011) Engineered ZnO and TiO 2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881. doi: 10.1016/j.freeradbiomed.2011.08.025 PubMedCrossRefGoogle Scholar
  51. Kumar A, Kumar P, Anandan A et al (2014) Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity, and future directions. J Nanomater 2014:1Google Scholar
  52. Kumbıçak Ü, Çavaş T, Çinkılıç N et al (2014) Evaluation of in vitro cytotoxicity and genotoxicity of copper–zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 73:105–112. doi: 10.1016/j.fct.2014.07.040 PubMedCrossRefGoogle Scholar
  53. Kwon JY, Kim HL, Lee JY et al (2014a) Undetactable levels of genotoxicity of SiO 2 nanoparticles in in vitro and in vivo tests. Int J Nanomedicine 9:173–181PubMedPubMedCentralGoogle Scholar
  54. Kwon JY, Lee SY, Koedrith P et al (2014b) Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat Res Genet Toxicol Environ Mutagen 761:1–9. doi: 10.1016/j.mrgentox.2014.01.005 PubMedCrossRefGoogle Scholar
  55. Ladhar C, Geffroy B, Cambier S et al (2014) Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicology 8:676–685. doi: 10.3109/17435390.2013.822116 PubMedCrossRefGoogle Scholar
  56. Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat Res Rev Mutat Res 681:241–258. doi: 10.1016/j.mrrev.2008.10.002 CrossRefGoogle Scholar
  57. Li H, Haberzettl P, Albrecht C et al (2007) Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells. Mutat Res 617:46–57. doi: 10.1016/j.mrfmmm.2006.12.001 PubMedCrossRefGoogle Scholar
  58. Li H, Li F, Wang L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552. doi: 10.1016/j.foodchem.2008.09.085 CrossRefGoogle Scholar
  59. Li X, Xu L, Shao A et al (2013a) Cytotoxic and genotoxic effects of silver nanoparticles on primary syrian hamster embryo (SHE) cells. J Nanosci Nanotechnol 13:161–170. doi: 10.1166/jnn.2013.7077 PubMedCrossRefGoogle Scholar
  60. Li Y, Bhalli JA, Ding W et al (2013b) Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 5390:1–10. doi: 10.3109/17435390.2013.855827 Google Scholar
  61. Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sensors Actuators B Chem 107:849–855. doi: 10.1016/j.snb.2004.12.026 CrossRefGoogle Scholar
  62. Magdolenova Z, Collins A, Kumar A et al (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278. doi: 10.3109/17435390.2013.773464 PubMedCrossRefGoogle Scholar
  63. Maisanaba S, Pichardo S, Puerto M et al (2015) Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res 138:233–254. doi: 10.1016/j.envres.2014.12.024 PubMedCrossRefGoogle Scholar
  64. McClements DJ (2013) Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog Lipid Res 52:409–423. doi: 10.1016/j.plipres.2013.04.008 PubMedCrossRefGoogle Scholar
  65. McClements DJ (2015) Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J Food Sci. doi: 10.1111/1750-3841.12919 PubMedGoogle Scholar
  66. Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B Chem 136:344–349. doi: 10.1016/j.snb.2008.12.048 CrossRefGoogle Scholar
  67. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343. doi: 10.1163/156855401753255422 CrossRefGoogle Scholar
  68. Molitch-Hou M (2014) 11 Food 3D printers from the future – 3D printing industry. In: 3D printing, food, Ind. insights.
  69. Mouneyrac C, Buffet PE, Poirier L et al (2014) Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ Sci Pollut Res 21:7899–7912. doi: 10.1007/s11356-014-2745-7 CrossRefGoogle Scholar
  70. Nandita D, Ranjan S, Mundra S et al (2015) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708. doi: 10.1080/10942912.2015.1042587 Google Scholar
  71. NanoGenoTox partnership (2013) NANOGENOTOX Final report. Facilitating the safety evaluation of manufactured nanomaterials by characterising their potential genotoxic hazard. Nanogenotox 60Google Scholar
  72. NanoWerk (2016) Nanotechnology databases.
  73. Nau K, Krug HF (2009) The NanoCare project: a German initiative on health aspects of synthetic nanoparticles. J Phys Conf Ser 170:012038. doi: 10.1088/1742-6596/170/1/012038 CrossRefGoogle Scholar
  74. Nelson CH (2001) Risk perception, behavior, and consumer response to genetically modified organisms. Am Behav Sci 44:1371–1388CrossRefGoogle Scholar
  75. Nemmar A, Vanbilloen H, Hoylaerts MF et al (2001) Learn to be a leader at ATS 2012: learn more about PG14 and PG28\n\nPassage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. About Am J Respir Crit Care Med 164:1665–1668. doi: 10.1164/rccm2101036 PubMedCrossRefGoogle Scholar
  76. Neo YP, Ray S, Jin J et al (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chem 136:1013–1021. doi: 10.1016/j.foodchem.2012.09.010 PubMedCrossRefGoogle Scholar
  77. O’Brien N, Cummins E (2010a) Nano-scale pollutants: fate in Irish surface and drinking water regulatory systems. Hum Ecol Risk Assess An Int J 16:847–872CrossRefGoogle Scholar
  78. O’Brien N, Cummins E (2010b) Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:992–1007. doi: 10.1080/10934521003772410 PubMedCrossRefGoogle Scholar
  79. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi: 10.1080/17435390701314761 CrossRefGoogle Scholar
  80. OECD (2013) In vivo mammalian alkaline comet assay. 1–33. doi:10.1787/9789264224179Google Scholar
  81. Otoni CG, Pontes SFO, Medeiros EAA, NDFF S (2014) Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62:5214–5219. doi: 10.1021/jf501055f PubMedCrossRefGoogle Scholar
  82. Page K, Palgrave RG, Parkin IP et al (2007) Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17:95–104. doi: 10.1039/b611740f CrossRefGoogle Scholar
  83. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258. doi: 10.1016/j.memsci.2008.04.009 CrossRefGoogle Scholar
  84. Park SH, Meang E (2014) Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles. Int J Nanomedicine 2014:3–10Google Scholar
  85. Powers KW, Brown SC, Krishna VB et al (2006) Research strategies for safety evaluation of nanomaterials. Part VI. characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303. doi: 10.1093/toxsci/kfj099 PubMedCrossRefGoogle Scholar
  86. Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386. doi: 10.1016/j.watres.2006.09.018 PubMedCrossRefGoogle Scholar
  87. Pray L, Yaktine A (2009) Nanotechnology in food products: workshop summary. National Academies Press, Washington, DCGoogle Scholar
  88. Project on Emerging Nanotechnologies (2013) Consumer products inventory. In: Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars, Washington, DC.
  89. Ramos M, Valdés A, Mellinas A, Garrigós M (2015) New trends in beverage packaging systems: a review. Beverages 1:248–272. doi: 10.3390/beverages1040248 CrossRefGoogle Scholar
  90. Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464CrossRefGoogle Scholar
  91. Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle–protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci. doi: 10.1007/s40011-015-0673-z Google Scholar
  92. Read M (2011) Do nanoparticles in food pose a health risk? Environ Sci Technol 25:11–16. doi: 10.1080/02652030802007553 Google Scholar
  93. Reisch LA, Scholl G, Bietz S (2011) “Better safe than sorry”: consumer perceptions of and deliberations on nanotechnologies. Int J Consum Stud 35:644–654. doi: 10.1111/j.1470-6431.2010.00979.x CrossRefGoogle Scholar
  94. Renwick LC, Donaldson K, Clouter A (2001) Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 172:119–127. doi: 10.1006/taap.2001.9128 PubMedCrossRefGoogle Scholar
  95. Rigo LA, Frescura V, Fiel L et al (2014) Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study. Pharm Dev Technol 19:789–798. doi: 10.3109/10837450.2013.829097 PubMedCrossRefGoogle Scholar
  96. Sahu SC, Casciano D (2009) Nanotoxicity: from in vivo and in vitro models to health risks. Wiley, ChichesterCrossRefGoogle Scholar
  97. Sahu SC, Roy S, Zheng J et al (2014) Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation. J Appl Toxicol 34:1200PubMedCrossRefGoogle Scholar
  98. Salamanca-Buentello F, Persad DL, Court EB et al (2005) Nanotechnology and the developing world. PLoS Med 2:0383–0386. doi: 10.1371/journal.pmed.0020097 CrossRefGoogle Scholar
  99. Santos AR, Miguel AS, Macovei A et al (2013) CdSe/ZnS quantum dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture. BMC Biotechnol 13:111. doi: 10.1186/1472-6750-13-111 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Savaliya R, Shah D, Singh R et al (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab 16:645PubMedCrossRefGoogle Scholar
  101. SCENIHR (2014) The safety of dental amalgam and alternative dental restoration materials for patients and users. SCENIHR (Scientific Comm. Emerg. Newly-Identified Heal. Risks). pp 1–105Google Scholar
  102. Semisch A, Ohle J, Witt B, Hartwig A (2014) Cytotoxicity and genotoxicity of nano – and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 11:10. doi: 10.1186/1743-8977-11-10 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Senapati VA, Kumar A, Gupta GS et al (2015) ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: a mechanistic approach. Food Chem Toxicol 85:61–70. doi: 10.1016/j.fct.2015.06.018 PubMedCrossRefGoogle Scholar
  104. Sharma V, Kumar A, Dhawan A (2012) Nanomaterials: exposure, effects and toxicity assessment. Proc Natl Acad Sci India Sect B Biol Sci 82:3–11. doi: 10.1007/s40011-012-0072-7 CrossRefGoogle Scholar
  105. Shibata T (2002) Method for producing green tea in microfine powderGoogle Scholar
  106. Shukla AK, Pragya P, Chowdhuri DK (2011) A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen 726:222–226. doi: 10.1016/j.mrgentox.2011.09.017 CrossRefGoogle Scholar
  107. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95. doi: 10.1016/j.tifs.2006.09.004 CrossRefGoogle Scholar
  108. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89. doi: 10.1016/j.tibtech.2008.10.010 PubMedCrossRefGoogle Scholar
  109. Stellman JM (1998) Encyclopaedia of occupational health and safety: the body, health care, management and policy, tools and approaches. 6:4230Google Scholar
  110. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506. doi: 10.1016/j.compscitech.2008.11.016 CrossRefGoogle Scholar
  111. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168. doi: 10.1016/j.colsurfb.2008.11.004 PubMedCrossRefGoogle Scholar
  112. Tarantini A, Huet S, Jarry G (2014) Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part1: oral route. Environ Mol Mutagen 1–10Google Scholar
  113. Tiede K, Boxall A, Tear S et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 07:795–821. doi: 10.1080/02652030802007553 CrossRefGoogle Scholar
  114. Trouiller B, Reliene R, Westbrook A et al (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789. doi: 10.1158/0008-5472.CAN-09-2496 PubMedCrossRefGoogle Scholar
  115. UK Parliament Publications (2008) Nanotechnologies and food – science and technology committee contents. In: UK ParliamGoogle Scholar
  116. Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi: 10.3762/bjnano.6.181 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71. doi: 10.2147/NSA.S23932 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Warheit DB, Webb TR, Reed KL et al (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104. doi: 10.1016/j.tox.2006.11.002 PubMedCrossRefGoogle Scholar
  119. Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi: 10.1021/es204168d PubMedPubMedCentralCrossRefGoogle Scholar
  120. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:107–116. doi: 10.1111/j.1750-3841.2006.00195.x CrossRefGoogle Scholar
  121. Wojewódzka M, Lankoff A, Dusińska M et al (2011) Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika 56:29–33Google Scholar
  122. Wottrich R, Diabaté S, Krug HF (2004) Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health 207:353–361. doi: 10.1078/1438-4639-00300 PubMedCrossRefGoogle Scholar
  123. Xiao-e L, Green ANM, Haque SA et al (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162:253–259. doi: 10.1016/j.nainr.2003.08.010 CrossRefGoogle Scholar
  124. Xu A, Chai Y, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:3. doi: 10.1186/1743-8977-6-3 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Xu L, Li X, Takemura T et al (2012) Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnol 10:16. doi: 10.1186/1477-3155-10-16 CrossRefGoogle Scholar
  126. Xu J, Shi H, Ruth M et al (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 8:1–6. doi: 10.1371/journal.pone.0070618 Google Scholar
  127. Yang HY, Han ZJ, Yu SF et al (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat Commun 4:2220. doi: 10.1038/ncomms3220 PubMedGoogle Scholar
  128. Yu H, Xu X, Chen X et al (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133. doi: 10.1002/app.24835 CrossRefGoogle Scholar
  129. Zhao Y, Nel A, Riehemann K (2013) Filling knowledge gaps that distinguish the safety profiles of nano versus bulk materials. Small 9:1426–1427. doi: 10.1002/smll.201300500 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Venkatraman Manickam
    • 1
    Email author
  • Ranjith Kumar Velusamy
    • 2
  • Rajeeva Lochana
    • 1
  • Amiti
    • 1
  • Bhavapriya Rajendran
    • 1
  • Tamizhselvi Ramasamy
    • 2
  1. 1.Department of BioSciences, School of BioSciences and TechnologyVIT UniversityVelloreIndia
  2. 2.Department of Biotechnology, School of BioSciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations