Advertisement

Nanopackaging in Food and Electronics

  • Nabeel AhmadEmail author
  • Sharad Bhatnagar
  • Shyam Dhar Dubey
  • Ritika Saxena
  • Shweta Sharma
  • Rajiv Dutta
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)

Abstract

Nanoscience has induced a profound revolution in all industrial domains, notably in the food and electronic industries. The food industry has constantly augment the quality, shelf life, safety and traceability of products. This has led to development of nanomaterials for food packaging and nanosensors to detect contaminations. Nanomaterials are to develop ‘improved’, ‘active’ and ‘intelligent food packaging. Nanomaterials have also been conjugated with biobased polymers to develop environmentally friendly nanocomposites. This article review nanopackaging of food with emphasis on carbon nanotubes, nanosensors, nanowires, nanolaminates, nanocomposites, nanocrystals, biobased fillers for nanocomposite, and antimicrobial nanoparticles.

Keywords

Nanotechnology Food packaging Electronic packaging Nanocomposites Carbon nanotubes 

References

  1. Ahmad N, Kumar MS (2011) Nanoparticles: study of preparation & its toxicity effects on living systems. Bionano Front 4(1):1–5Google Scholar
  2. Ahmad N, Shree K, Srivastava M, Dutta R (2014) Novel rapid biological approach for synthesis of silver nanoparticles and its characterization. Int J Pharmacol 1(1):28–31Google Scholar
  3. Ahmad N, Bhatnagar S, Ali SS, Dutta R (2015) Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomedicine 10:7019PubMedPubMedCentralGoogle Scholar
  4. Ahvenainen R (ed) (2003) Novel food packaging techniques. Elsevier, Boca RatonGoogle Scholar
  5. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol 41(6):1100–1107CrossRefGoogle Scholar
  6. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49PubMedCrossRefGoogle Scholar
  7. Aryasomayajula L, Wolter KJ (2013) Carbon nanotube composites for electronic packaging applications: a review. J Nanotechnol 2013:1–6CrossRefGoogle Scholar
  8. Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Inter Nano Lett 4(1):1–5CrossRefGoogle Scholar
  9. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  10. Aspnes DE (1982) Optical properties of thin films. Thin Solid Films 89(3):249–262CrossRefGoogle Scholar
  11. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRefGoogle Scholar
  12. Bakoš D, Šimon P, Chaudhry Q (2008) Migration of engineered nanoparticles from polymer packaging to food–a physicochemical view. J Food Nutrit Res 47(3):105–113Google Scholar
  13. Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites—a state of the art. Bull Mater Sci 30(4):379–386CrossRefGoogle Scholar
  14. Balazs AC, Singh C, Zhulina E (1998) Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31(23):8370–8381CrossRefGoogle Scholar
  15. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7(4–5):1239–1267PubMedCrossRefGoogle Scholar
  16. Barlow S, Chesson A, Collins JD, Flynn A, Hardy A, Jany KD, Schans J (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J Eur Comm 958:1–39Google Scholar
  17. Besteman K, Lee JO, Wiertz FG, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730CrossRefGoogle Scholar
  18. Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) BioMEMS and nanotechnology-based approaches for rapid detection of biological entities. J Rapid Meth Automat Microbiol 15(1):1–32CrossRefGoogle Scholar
  19. Boston R, Schnepp Z, Nemoto Y, Sakka Y, Hall SR (2014) In Situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344(6184):623–626PubMedCrossRefGoogle Scholar
  20. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870PubMedCrossRefGoogle Scholar
  21. Brody AL (2003) “Nano, Nano” food packaging technology. Food Technol 57(12):52–58Google Scholar
  22. Brown N (1992) Plastics in food patkaging: properties: design and fabrication, vol 5. CRC PressGoogle Scholar
  23. Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27(11):1617–1626CrossRefGoogle Scholar
  24. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848PubMedCrossRefGoogle Scholar
  25. Canel C (2006) Micro and nanotechnologies for food safety and quality applications. MNE’06 Micro-Nano-Eng 35(3):219–225Google Scholar
  26. Card JW, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxicol 29(4):402–410PubMedCrossRefGoogle Scholar
  27. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619PubMedCrossRefGoogle Scholar
  28. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237PubMedCrossRefGoogle Scholar
  29. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):595–603CrossRefGoogle Scholar
  30. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258CrossRefGoogle Scholar
  31. Chawengkijwanich C, Hayata Y (2008) Development of TiO 2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292PubMedCrossRefGoogle Scholar
  32. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683):346–349CrossRefGoogle Scholar
  33. Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60(3):30–36Google Scholar
  34. Cheung CL, Nikolić RJ, Reinhardt CE, Wang TF (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17(5):1339CrossRefGoogle Scholar
  35. Choi YK, Zhu J, Grunes J, Bokor J, Somorjai GA (2003) Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography. J Phys Chem B 107(15):3340–3343CrossRefGoogle Scholar
  36. Coles R, McDowell D, Kirwan MJ (eds) (2003) Food packaging technology, vol 5. CRC Press, OxfordGoogle Scholar
  37. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85PubMedCrossRefGoogle Scholar
  38. Dai H (2002a) Carbon nanotubes: opportunities and challenges. Surf Sci 500(1):218–241CrossRefGoogle Scholar
  39. Dai H (2002b) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044PubMedCrossRefGoogle Scholar
  40. Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis AS (2004) Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res 295(2):387–394PubMedCrossRefGoogle Scholar
  41. Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2015) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 1–15Google Scholar
  42. Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19(3):700–708CrossRefGoogle Scholar
  43. de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24CrossRefGoogle Scholar
  44. Dekkers S, Noordam M, Hagens W, Bulder A, De Heer C, ten Voorde SECG, Sips A (2007) Health impact of nanotechnologies in food production. RIKILT, WageningenGoogle Scholar
  45. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55(10):2388–2395CrossRefGoogle Scholar
  46. Dias MV, Nilda de Fátima FS, Borges SV, de Sousa MM, Nunes CA, de Oliveira IRN, Medeiros EAA (2013) Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem 141(3):3160–3166PubMedCrossRefGoogle Scholar
  47. Di Natale C, Davide FA, D’Amico A, Nelli P, Groppelli S, Sberveglieri G (1996) An electronic nose for the recognition of the vineyard of a red wine. Sensors Actuators B Chem 33(1):83–88CrossRefGoogle Scholar
  48. Donsì F, Annunziata M, Vincensi M, Ferrari G (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159(4):342–350PubMedCrossRefGoogle Scholar
  49. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24Google Scholar
  50. Dunlap BI (1992) Connecting carbon tubules. Phys Rev B 46(3):1933CrossRefGoogle Scholar
  51. El Amin A (2005) Consumers and regulators push food packaging innovationGoogle Scholar
  52. El Amin A (2007) Nanoscale particles designed to block UV light. Available at: http://foodproductiondaily.com/news/ng.asp?id=80676
  53. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197Google Scholar
  54. Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll 32(1):106–114CrossRefGoogle Scholar
  55. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512–514PubMedCrossRefGoogle Scholar
  56. Fernández A, Soriano E, López-Carballo G, Picouet P, Lloret E, Gavara R, Hernández-Muñoz P (2009) Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int 42(8):1105–1112CrossRefGoogle Scholar
  57. Food and Drug Administration (2016) FDA and nanotechnology products. Retrieved 15 March 2016 from http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/default.htm
  58. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Kenny JM (2012) Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87(2):1596–1605CrossRefGoogle Scholar
  59. Frómeta NR (2006) Cantilever biosensors. Biotecnol Apl 23(4):320–323Google Scholar
  60. Fuhrer MS, Nygård J, Shih L, Forero M, Yoon YG, Choi HJ, McEuen PL (2000) Crossed nanotube junctions. Science 288(5465):494–497PubMedCrossRefGoogle Scholar
  61. Fusil S, Piraux L, Michotte S, Saul C K, Pereira L G, Bouzehouane K, ... George J M (2005) Nanolithography based contacting method for electrical measurements on single template synthesized nanowires. Nanotechnology 16(12):2936Google Scholar
  62. Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J Food Sci 73(8):M389–M394PubMedCrossRefGoogle Scholar
  63. Gad-el-Hak M (ed) (2001) The MEMS handbook. CRC press, Boca RatonGoogle Scholar
  64. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622CrossRefGoogle Scholar
  65. García M, Aleixandre M, Gutiérrez J, Horrillo MC (2006) Electronic nose for wine discrimination. Sensors Actuators B Chem 113(2):911–916CrossRefGoogle Scholar
  66. Gelves GA, Murakami ZT, Krantz MJ, Haber JA (2006) Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J Mater Chem 16(30):3075–3083CrossRefGoogle Scholar
  67. Geys J, Nemery B, Hoet PH (2010) Assay conditions can influence the outcome of cytotoxicity tests of nanomaterials: better assay characterization is needed to compare studies. Toxicol in Vitro 24(2):620–629PubMedCrossRefGoogle Scholar
  68. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65PubMedCrossRefGoogle Scholar
  69. Ghosh V, Mukherjee A, Chandrasekaran N (2014) Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B: Biointerfaces 114:392–397PubMedCrossRefGoogle Scholar
  70. Gómez-Sjöberg R, Morisette DT, Bashir R (2005) Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. Microelectromech Syst J 14(4):829–838CrossRefGoogle Scholar
  71. Gonera A, Cornillon P (2002) Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM. Starch-Stärke 54(11):508–516CrossRefGoogle Scholar
  72. Goolaup S, Singh N, Adeyeye AO (2005) Coercivity variation in Ni80Fe20 ferromagnetic nanowires. Nanotechnol IEEE Trans 4(5):523–526CrossRefGoogle Scholar
  73. Gotic M, Czako-Nagy I, Popovic S, Music S (1998) Formation of nanocrystalline NiFe2O4. Philos Mag Lett 78(3):193–201CrossRefGoogle Scholar
  74. Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Li Y, Cima MJ, Langer R (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92(1):6–21CrossRefGoogle Scholar
  75. Gubbiotti G, Tacchi S, Carlotti G, Vavassori P, Singh N, Goolaup S, ... Kostylev M (2005) Magnetostatic interaction in arrays of nanometric permalloy wires: a magneto-optic Kerr effect and a Brillouin light scattering study. Physical Review B 72(22):224413Google Scholar
  76. Gudiksen MS, Wang J, Lieber CM (2002) Size-dependent photoluminescence from single indium phosphide nanowires. J Phys Chem B 106(16):4036–4039CrossRefGoogle Scholar
  77. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1):49–54CrossRefGoogle Scholar
  78. Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R (2004) Towards a transparent, highly conductive poly (3, 4-ethylenedioxythiophene). Adv Funct Mater 14(6):615–622CrossRefGoogle Scholar
  79. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4(4):425–432PubMedCrossRefGoogle Scholar
  80. Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9(2):125–144CrossRefGoogle Scholar
  81. Hangarter CM, Rheem Y, Yoo B, Yang EH, Myung NV (2007) Hierarchical magnetic assembly of nanowires. Nanotechnology 18(20):205305CrossRefGoogle Scholar
  82. Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17(5):438–447PubMedCrossRefGoogle Scholar
  83. Hernandez RJ, Selke SE, Culter JD, Culter JD (2000) Plastics packaging: properties, processing, applications, and regulations. Hanser, Munich, p 425Google Scholar
  84. Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961CrossRefGoogle Scholar
  85. Hong BH, Bae SC, Lee CW, Jeong S, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294(5541):348–351PubMedCrossRefGoogle Scholar
  86. Hornbostel B, Haluska M, Cech J, Dettlaff U, Roth S (2006) Arc discharge and laser ablation synthesis of singlewalled carbon nanotubes. In Carbon nanotubes, pp 1–18. Springer Netherlands, http://www.plasmatreat.com/industrial-applications/packaging/plastic-packaging/nano-coating-improve-barrier-property-plastic-packaging.html
  87. Hu AW, Fu ZH (2003) Nanotechnology and its application in packaging and packaging machinery. Packag Eng 24:22–24Google Scholar
  88. Hu Y, Shen G, Zhu H, Jiang G (2010) A class-specific enzyme-linked immunosorbent assay based on magnetic particles for multiresidue organophosphorus pesticides. J Agric Food Chem 58(5):2801–2806PubMedCrossRefGoogle Scholar
  89. Huang Q, Lilley CM, Bode M, Divan R (2008) Surface and size effects on the electrical properties of Cu nanowires. J Appl Phys 104(2):023709CrossRefGoogle Scholar
  90. Hulteen J (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7(7):1075–1087CrossRefGoogle Scholar
  91. Isaacs JA, Tanwani A, Healy ML, Dahlben LJ (2010) Economic assessment of single-walled carbon nanotube processes. J Nanopart Res 12(2):551–562CrossRefGoogle Scholar
  92. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067CrossRefGoogle Scholar
  93. Javey A, Qi P, Wang Q, Dai H (2004) Ten-to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc Natl Acad Sci U S A 101(37):13408–13410PubMedPubMedCentralCrossRefGoogle Scholar
  94. Johnson JC, Yan H, Schaller RD, Haber LH, Saykally RJ, Yang P (2001) Single nanowire lasers. J Phys Chem B 105(46):11387–11390CrossRefGoogle Scholar
  95. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76PubMedCrossRefGoogle Scholar
  96. Jones WE, Chiguma J, Johnson E, Pachamuthu A, Santos D (2010) Electrically and thermally conducting nanocomposites for electronic applications. Materials 3(2):1478–1496CrossRefGoogle Scholar
  97. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673PubMedCrossRefGoogle Scholar
  98. Katsen-Globa A, Peter L, Pflueger S, Doerge T, Daffertshofer M, Preckel H, ... Zimmermann H (2006) 185. Cell behaviour on nano-and microstructured surfaces: from fabrication, treatment and evaluation of substrates towards cryopreservation. Cryobiology 53(3):445–446Google Scholar
  99. Kerry J, Butler P (2008) Smart packaging technologies for fast moving consumer goods. Wiley, Chichester/Hoboken, p 340CrossRefGoogle Scholar
  100. Kim M, Pometto AL (1994) Food packaging potential of some novel degradable starch-polyethylene plastics. J Food Prot 57(11):1007–1012CrossRefGoogle Scholar
  101. Kirwan M J, Strawbridge J W (2003) 7 Plastics in food packaging. Food Packag Technol 174Google Scholar
  102. Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42(4):1303–1310CrossRefGoogle Scholar
  103. Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14):2081–2088PubMedCrossRefGoogle Scholar
  104. Labuza TP, Breene WM (1989) Applications of “active packaging” for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods 1. J Food Process Preserv 13(1):1–69CrossRefGoogle Scholar
  105. Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: nanocomposites. Food Addit Contam 22(10):994–998PubMedCrossRefGoogle Scholar
  106. Landman U, Barnett RN, Scherbakov AG, Avouris P (2000) Metal-semiconductor nanocontacts: silicon nanowires. Phys Rev Lett 85(9):1958PubMedCrossRefGoogle Scholar
  107. Langer L, Bayot V, Grivei E, Issi J P, Heremans J P, Olk C H, ... Bruynseraede Y (1996) Quantum transport in a multiwalled carbon nanotube. Physical Rev Lett 76(3):479Google Scholar
  108. Lasjaunias JC, Biljaković K, Benes Z, Fischer JE, Monceau P (2002) Low-temperature specific heat of single-wall carbon nanotubes. Phys Rev B 65(11):113409CrossRefGoogle Scholar
  109. Lee MW, Twu HZ, Chen CC, Chen CH (2001) Optical characterization of wurtzite gallium nitride nanowires. Appl Phys Lett 79(22):3693–3695CrossRefGoogle Scholar
  110. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602PubMedCrossRefGoogle Scholar
  111. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552Google Scholar
  112. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25(4):279–283PubMedCrossRefGoogle Scholar
  113. Lindeberg M, Ojefors E, Rydberg A, Hjort K (2003) 30 GHz Litz wires defined by ion track lithography. In TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003, vol 1. IEEE, Piscataway, pp 887–890Google Scholar
  114. Liu Y, Chakrabartty S, Alocilja EC (2007) Fundamental building blocks for molecular biowire based forward error-correcting biosensors. Nanotechnology 18(42):424017PubMedCrossRefGoogle Scholar
  115. Liu SF, Petty AR, Sazama GT, Swager TM (2015) Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew Chem 127(22):6654–6657CrossRefGoogle Scholar
  116. Logeeswaran VJ, Oh J, Nayak AP, Katzenmeyer AM, Gilchrist KH, Grego S, Islam MS (2011) A perspective on nanowire photodetectors: current status, future challenges, and opportunities. Select Top Quantum Electron IEEE J 17(4):1002–1032CrossRefGoogle Scholar
  117. Luduena LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460:121–129CrossRefGoogle Scholar
  118. Lyons DM, Ryan KM, Morris MA, Holmes JD (2002) Tailoring the optical properties of silicon nanowire arrays through strain. Nano Lett 2(8):811–816Google Scholar
  119. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311(5768):1740–1743PubMedCrossRefGoogle Scholar
  120. Market Attitude Research Services (2009) Australian community attitudes about nanotechnology – 2005–2009. Department of Industry, Innovation, Science and Research, AustraliaGoogle Scholar
  121. Maynard A (2010) Presentation: nanotechnology and human health impact. A framework for strategic research. Available from http://www.nanotechproject.org/process/files/2741/18_nanotechnologyhumanhealthimpactframeworkstrategicresearch.pdf. Accessed June 2010
  122. Medeiros BGDS, Souza MP, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG (2014) Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘Coalho’cheese shelf life. Food Bioprocess Technol 7(4):1088–1098CrossRefGoogle Scholar
  123. Miller G, van Schaik D (2008) Nanotechnology in food and agriculture. Radio Adelaide. Available: http://www.foeeurope.org/activities/nanotechnology/Documents/Nano_food_report.Pdf
  124. Mills A, Hazafy D (2009) Nanocrystalline SnO 2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B Chem 136(2):344–349CrossRefGoogle Scholar
  125. Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A (2002) Factors affecting the moisture permeability of lipid-based edible films: a review. Crit Rev Food Sci Nutr 42(1):67–89PubMedCrossRefGoogle Scholar
  126. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346PubMedCrossRefGoogle Scholar
  127. Morris JE (2006) Nanopackaging: nanotechnologies and electronics packaging. In: Electronics system integration technology conference, 2006. 1st, vol 2. IEEE, Piscataway, pp 873–880CrossRefGoogle Scholar
  128. Munro IC, Haighton LA, Lynch BS, Tafazoli S (2009) Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Addit Contam 26(12):1534–1546CrossRefGoogle Scholar
  129. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). Electron Dev Lett IEEE 26(2):84–86CrossRefGoogle Scholar
  130. Nakayama A, Kawasaki N, Maeda Y, Arvanitoyannis I, Aiba S, Yamamoto N (1997) Study of biodegradability of poly (δ-valerolactone-co-L-lactide) s. J Appl Polym Sci 66(4):741–748CrossRefGoogle Scholar
  131. Nam K T, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, ... Belcher AM (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888Google Scholar
  132. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  133. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, ... Natan MJ (2001) Submicrometer metallic barcodes. Science 294(5540):137–141Google Scholar
  134. Nugaeva N, Gfeller KY, Backmann N, Lang HP, Düggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21(6):849–856PubMedCrossRefGoogle Scholar
  135. NutraLease (2011) Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84& FID=767
  136. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303CrossRefGoogle Scholar
  137. Pannaparayil I, Marande R, Komameni S, Sankar SG (1988) A novel low temperature preparation of several ferrimagnetic spinels and their magnetic and Mössbauer characterization. J Appl Phys 64:5641–5643CrossRefGoogle Scholar
  138. Parviz BA, Ryan D, Whitesides GM (2003) Using self-assembly for the fabrication of nano-scale electronic and photonic devices. Adv Packag IEEE Trans 26(3):233–241CrossRefGoogle Scholar
  139. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 11:1182–1184CrossRefGoogle Scholar
  140. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRefGoogle Scholar
  141. Peris M, Escuder-Gilabert L (2009) A 21st century technique for food control: electronic noses. Anal Chim Acta 638(1):1–15PubMedCrossRefGoogle Scholar
  142. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials.Composites. Sci Technol 67(11):2535–2544Google Scholar
  143. Pissis P (2007) In: Kotsilkova R (ed) Thermoset nanocomposites for engineering applications. Smithers Rapra Publishing, ShrewsburyGoogle Scholar
  144. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102CrossRefGoogle Scholar
  145. Possin GE (1970) A method for forming very small diameter wires. Rev Sci Instrum 41(5):772–774CrossRefGoogle Scholar
  146. Prober DE, Feuer MD, Giordano N (1980) Fabrication of 300-Å metal lines with substrate-step techniques. Appl Phys Lett 37(1):94–96CrossRefGoogle Scholar
  147. Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):1–23CrossRefGoogle Scholar
  148. Ravichandran R (2009) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Inter J Green Nanotechnol Biomed 1(2):B108–B130Google Scholar
  149. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  150. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  151. Reynolds G (2007) FDA recommends nanotechnology research, but not labelling. FoodProductionDaily. com News 26 July 2007Google Scholar
  152. Rheem Y, Yoo BY, Beyermann WP, Myung NV (2007) Electro-and magneto-transport properties of a single CoNi nanowire. Nanotechnology 18(12):125204CrossRefGoogle Scholar
  153. Rhim JW (2004) Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. Food Sci Biotechnol 13(4):528–535Google Scholar
  154. Robertson GL (2012) Food packaging: principles and practice. CRC press, Boca RatonGoogle Scholar
  155. Rodriguez A, Nerin C, Batlle R (2008) New cinnamon-based active paper packaging against Rhizopusstolonifer food spoilage. J Agric Food Chem 56(15):6364–6369PubMedCrossRefGoogle Scholar
  156. Sanchez-Garcia MD, Ocio MJ, Gimenez E, Lagaron JM (2008) Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. J Plastic Film Sheet 24(3–4):239–251CrossRefGoogle Scholar
  157. Sarid D (1991) Scanning force microscopy. Oxford University Press, New YorkGoogle Scholar
  158. Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68(15):155427CrossRefGoogle Scholar
  159. Seki A, Kawakubo K, Iga M, Nomura S (2003) Microbial assay for tryptophan using silicon-based transducer. Sensors Actuators B Chem 94(3):253–256CrossRefGoogle Scholar
  160. Shan D, Wang Y, Xue H, Cosnier S (2009) Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sensors Actuators B Chem 136(2):510–515CrossRefGoogle Scholar
  161. Siegrist M, Cousin ME, Kastenholz H, Wiek A (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. Appetite 49(2):459–466PubMedCrossRefGoogle Scholar
  162. Siegrist M, Stampfli N, Kastenholz H, Keller C (2008) Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51(2):283–290PubMedCrossRefGoogle Scholar
  163. Šimon P, Joner E (2008) Conceivable interactions of biopersistent nanoparticles with food matrix and living systems following from their physicochemical properties. J Food Nutrit Res 47(2):51–59Google Scholar
  164. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  165. Smith DR, Gottfried DA (2008) Photonics and Food-MEMS Technology Tackles Food and Agricultural Challenges-Photonic and MEMS solutions abound in the food and beverage industries. Photon Spect 42(3):42Google Scholar
  166. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182PubMedCrossRefGoogle Scholar
  167. Spichiger-Keller UE (2008) Chemical sensors and biosensors for medical and biological applications. Wiley, WeinheimGoogle Scholar
  168. Star A, Gabriel JCP, Bradley K, Grüner G (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 3(4):459–463CrossRefGoogle Scholar
  169. Stępniowski WJ, Salerno M (2014) Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition. Manufact Nanostruct:321–357Google Scholar
  170. Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innovative Food Sci Emerg Technol 3(2):105–112CrossRefGoogle Scholar
  171. Stones M (2009) Nanoscience to boost food safety, quality and shelf life. Report from IFT 8Google Scholar
  172. Terjung N, Löffler M, Gibis M, Hinrichs J, Weiss J (2012) Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct 3(3):290–301PubMedCrossRefGoogle Scholar
  173. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78CrossRefGoogle Scholar
  174. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821CrossRefGoogle Scholar
  175. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503–509PubMedCrossRefGoogle Scholar
  176. Taoukis PS, Labuza TP (1989) Applicability of time‐temperature indicators as shelf life monitors of food products. J Food Sci 54(4):783–788Google Scholar
  177. Unilever (2011) Available at: http://www.unilever.com/innovation/productinnovations/coolicecreaminnovations/?WT.LHNAV=Cool_ice_cream_innovations. Accessed 13 Apr 2011
  178. Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30(25):8000–8009CrossRefGoogle Scholar
  179. Vasilev K, Zhu T, Wilms M, Gillies G, Lieberwirth I, Mittler S, Knoll W, Kreiter M (2005) Simple, one-step synthesis of gold nanowires in aqueous solution. Langmuir 21(26):12399–12403Google Scholar
  180. Véronique COMA (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78(1):90–103Google Scholar
  181. Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20):5087CrossRefGoogle Scholar
  182. Vliegenthart JFG, Smits ALM, Ruhnau FC, van Soest JJ (1998) Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch-Stärke 50(11–12):478–483Google Scholar
  183. Warad HC, Dutta J (2005) Nanotechnology for agriculture and food systems: a view. Microelectronics, School of Advanced Technologies, Asian Institute of Technology, Klong LuangGoogle Scholar
  184. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  185. Wu TM (2004) Carbon nanotube applications for CMOS back-end processing, Doctoral dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  186. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62(10):1327–1340CrossRefGoogle Scholar
  187. Yam KL (ed) (2010) The Wiley encyclopedia of packaging technology. Wiley, HobokenGoogle Scholar
  188. Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10CrossRefGoogle Scholar
  189. Yamamoto TA, Shull RD, Hahn HW (1997) Magnetization of iron-oxide/silver nanocomposite by inert gas condensation. Nanostruct Mater 9(1):539–542CrossRefGoogle Scholar
  190. Yu H, Wang J (2007) Discrimination of LongJing green-tea grade by electronic nose. Sensors Actuators B Chem 122(1):134–140CrossRefGoogle Scholar
  191. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Zhou O (2002) Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl Phys Lett 81(2):355–357CrossRefGoogle Scholar
  192. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363(1):123–128CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nabeel Ahmad
    • 1
    Email author
  • Sharad Bhatnagar
    • 1
  • Shyam Dhar Dubey
    • 1
  • Ritika Saxena
    • 1
  • Shweta Sharma
    • 2
  • Rajiv Dutta
    • 3
  1. 1.Department of Biotechnology, School of Engineering & Technology (SET)IFTM UniversityMoradabadIndia
  2. 2.School of BiotechnologyRajeev Gandhi Technical UniversityBhopalIndia
  3. 3.Department of Biotechnology, School of Engineering & Technology (SET)Sharada UniversityGreater NoidaIndia

Personalised recommendations