Skip to main content

Iron Oxide Nanoparticles to Remove Arsenic from Water

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 4

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 24))

Abstract

Arsenic contamination in water is a widespread problem globally. Millions of people depend on arsenic-contaminated groundwater. Arsenic poisoning leads to fatal diseases such as skin and internal cancers. Hence, the current regulation of drinking water standard has become more stringent and requires arsenic content to be reduced to a few parts per billion. Therefore, effective and inexpensive technologies for arsenic removal are needed. Majority of communities affected by arsenic contamination could not justify the cost and maintenance of installing centralized arsenic treatment systems. Thus, there is a need to develop point-of-use water treatment devices. Here we review arsenic contamination, it’s health effects, and available removal technologies. We then describe the development of a working prototype cartridge to remove arsenic from drinking water that meets international standard norms. For that we synthesized iron oxide nanoparticles using a chitosan biopolymer. Iron oxide originated from steel waste. Granules were thereafter packed in a column and evaluated for arsenic removal efficiency using simulated ground water compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid AD, Kanematsu M, Young TM, Kennedy IM (2013) Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci Technol 47(2):169–176 doi.org/10.1080/02786826.2012.735380

    Article  CAS  PubMed  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29:208–213. doi:10.1016/j.jclepro.2012.01.029

    Article  Google Scholar 

  • Chena R, Zhia C, Yanga H, Bandoa Y, Zhangb Z, Sugiura N, Golberga D (2011) Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359(1):261–268. doi:10.1016/j.jcis.2011.02.071

    Article  Google Scholar 

  • Du Y, Fan H, Wang L, Wang J, Wu J, Dai H (2013) Alpha-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. J Mater Chem A 1:7729–7737. doi:10.1039/C3TA11124E

    Article  CAS  Google Scholar 

  • Gang DD, Deng B, Lin L (2010) As(III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161. doi:10.1016/j.jhazmat.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Grafe M, Eick M, Grossi PR (2001) Adsorption of Arsenate (V) and Arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65:1680–1687. doi:10.2136/sssaj2001.1680

    Article  CAS  Google Scholar 

  • International Standard/American National Standard (NSF/ANSI 53–2011)-Drinking water treatment units-Health effects

    Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated ground waters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325. doi:10.1016/j.jenvman.2015.07.020

    Article  CAS  Google Scholar 

  • Jiang W, Lin S, Chang CH, Ji Z, Sun B, Wang X, Li R, Pon N, Xia T, Nel AE, Gupta A, Yunus M, Sankararamakrishnan N (2013) Chitosan- and Iron–Chitosan-coated sand filters: a cost-effective approach for enhanced arsenic removal. Ind Eng Chem Res 52(5):2066–2072. doi:10.1021/ie302428z

    Article  Google Scholar 

  • Katsoyiannis I, Zouboulis A (2003) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36(20):5141–5155. doi:10.1016/S0043-1354(02)00236-1

    Article  Google Scholar 

  • Liu B, Wang D, Li H, Wang L, Zhang L (2010) As(III) removal from aqueous solution using a-Fe2O3-impregnated Chitosan beads. Int Conf Digital Manuf Autom 1:289–292. doi:10.1109/ICDMA.2010.320

    Google Scholar 

  • Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36. doi:10.1016/j.microc.2011.10.001

    Article  CAS  Google Scholar 

  • Maji SK, Kao YH, Wang CJ, Lu GS, Wu JJ, Liu CW (2012) Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater. Chem Eng J 203:285–293. doi:10.1016/j.cej.2012.07.033

    Article  CAS  Google Scholar 

  • Martinson CA, Reddy KJ (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336(2):406–411. doi:10.1016/j.jcis.2009.04.075

    Article  CAS  PubMed  Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71–75. doi:10.1016/j.stam.2006.10.005

    Article  CAS  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2000) Effect of silicate, sulfate and carbonate on arsenic removal by ferric chloride. Water Res 34(4):1255–1261. doi:10.1016/S0043-1354(99)00272-9

    Article  CAS  Google Scholar 

  • Mohan D, Pittman C (2007) Arsenic removal from water/wastewater using adsorbents -a critical review. J Hazard Mater 142(1–2):1–53. doi:10.1016/j.jhazmat.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  • Morilloa D, Uheidab A, PĂ©reza G, Muhammedb M, Valientea M (2015) Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 438:227–234. doi:10.1016/j.jcis.2014.10.005

    Article  Google Scholar 

  • Mostafa MG, Hoinkis J (2012) Nanoparticle adsorbents for arsenic removal from drinking water: A review. Int J Environ Sci Manag Eng Res 1(1):20–31

    Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49 15680760

    Article  CAS  PubMed  Google Scholar 

  • Pajany YM, Hurel C, Marmier N, Romeo M (2009) Arsenic adsorption onto hematite and goethite. C R Chim 12(8):876–881. doi:10.1016/j.crci.2008.10.012

    Article  Google Scholar 

  • Pajany YM, Hurel C, Marmier N, Romeo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99. doi:10.1016/j.desal.2011.07.046

    Article  Google Scholar 

  • Ramos AD, Chavan K, Garcia V, Jimeno G, Albo J, Marathe KV, Yadav GD, Irabien A (2014) Arsenic removal from natural waters by adsorption or ion exchange: an environmental sustainability assessment. Ind Eng Chem Res 53(49):18920–18927. doi:10.1021/ie4044345

    Article  Google Scholar 

  • Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of Arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29(3):281–313. doi:10.1080/10643389991259227

    Article  CAS  Google Scholar 

  • Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47(10):3411–3421. doi:10.1016/j.watres.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Shanker U, Shikha U (2014) Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:1–18 http://dx.doi.org/10.1155/2014/304524

    Article  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759. doi:10.1016/j.envint.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Zboril R, Verma RS (2015) Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 48(2):182–191. doi:10.1021/ar5004219

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270. doi:10.1016/j.ecoenv.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103 PMCID: PMC2560840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spayd SE, Robson MG, Xie R, Buckley BT (2012) Importance of Arsenic speciation in populations exposed to Arsenic in drinking water. Hum Ecol Risk Assess 18(6):1271–1291. doi:10.1080/10807039.2012.722824

    Article  CAS  Google Scholar 

  • Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O (2007) A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for Arsenic removal from drinking water. Environ Eng Sci 24(1):104–112. doi:10.1089/ees.2007.24.104

    Article  CAS  Google Scholar 

  • Tara MC, Hayes KF, Raskin L (2013) Arsenic waste management: a critical review of testing and disposal of Arsenic-bearing solid wastes generated during Arsenic removal from drinking water. Environ Sci Technol 47:10799–10812 doi.org/10.1021/es401749b

    Article  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with Arsenic exposure. Toxicol Pathol 31(6):575–588. doi:10.1080/01926230390242007

    CAS  PubMed  Google Scholar 

  • Thomas DJ (2015) In: States JC (ed) The chemistry and metabolism of arsenic: Exposure sources, health risks and mechanisms of toxicity. Wiley, Hoboken. doi:10.1002/9781118876992.ch4

    Chapter  Google Scholar 

  • Vaclavikova M, Gallios G, Hredzak S, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Techn Environ Policy 10(1):89–95. doi:10.1007/s10098-007-0098-3

    Article  CAS  Google Scholar 

  • Vadahanambi S, Lee SH, Kim WJ, Oh IK (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47(18):10510–10517. doi:10.1021/es401389g

    CAS  PubMed  Google Scholar 

  • Vu KB, Kaminski MD, Nunez L (2003) Review of Arsenic removal technologies for contaminated ground waters (ANL-CMT-03/2) Argonne National Laboratory. doi:10.2172/815660

  • Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198(3):243–252. doi:10.1016/j.taap.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  • Zaspalis V, Pagana A, Sklari S (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination 217(1–3):167–180. doi:10.1016/j.desal.2007.02.011

    Article  CAS  Google Scholar 

  • Zhanga G, Rena Z, Zhangc X, Chena J (2013) Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47(12):4022–4031. doi:10.1016/j.watres.2012.11.059

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Mr. Manish Kumar Bhadu and Dr. Monojit Dutta of Tata steel Ltd. Jamshedpur for providing iron oxide powder, participation in useful technical discussions and support. Authors would also like to acknowledge their colleagues of Tata Chemicals water purifier business Mr. Sabaleel Nandy, Mr. Ujas Dave and Dr. Kumaresan Nallasamy for their support. The authors would gratefully like to acknowledge support for this research from Tata Chemicals Ltd. through its President –Innovation Centre, Dr. Arup Basu, and Head –Innovation Centre, Dr. Anil Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Rautaray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Parida, P., Lolage, M., Angal, A., Rautaray, D. (2017). Iron Oxide Nanoparticles to Remove Arsenic from Water. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 4. Sustainable Agriculture Reviews, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-53112-0_10

Download citation

Publish with us

Policies and ethics