Advertisement

Iron Oxide Nanoparticles to Remove Arsenic from Water

  • Prabhat Parida
  • Mayura Lolage
  • Ashwini Angal
  • Debabrata RautarayEmail author
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)

Abstract

Arsenic contamination in water is a widespread problem globally. Millions of people depend on arsenic-contaminated groundwater. Arsenic poisoning leads to fatal diseases such as skin and internal cancers. Hence, the current regulation of drinking water standard has become more stringent and requires arsenic content to be reduced to a few parts per billion. Therefore, effective and inexpensive technologies for arsenic removal are needed. Majority of communities affected by arsenic contamination could not justify the cost and maintenance of installing centralized arsenic treatment systems. Thus, there is a need to develop point-of-use water treatment devices. Here we review arsenic contamination, it’s health effects, and available removal technologies. We then describe the development of a working prototype cartridge to remove arsenic from drinking water that meets international standard norms. For that we synthesized iron oxide nanoparticles using a chitosan biopolymer. Iron oxide originated from steel waste. Granules were thereafter packed in a column and evaluated for arsenic removal efficiency using simulated ground water compositions.

Keywords

Arsenic Arsenic removal technologies Arsenic adsorption Arsenic remediation Water purification Iron oxide Drinking water Point-of-use water treatment Ground water contamination Arsenic toxicology 

Notes

Acknowledgements

Authors would like to acknowledge Mr. Manish Kumar Bhadu and Dr. Monojit Dutta of Tata steel Ltd. Jamshedpur for providing iron oxide powder, participation in useful technical discussions and support. Authors would also like to acknowledge their colleagues of Tata Chemicals water purifier business Mr. Sabaleel Nandy, Mr. Ujas Dave and Dr. Kumaresan Nallasamy for their support. The authors would gratefully like to acknowledge support for this research from Tata Chemicals Ltd. through its President –Innovation Centre, Dr. Arup Basu, and Head –Innovation Centre, Dr. Anil Kumar.

References

  1. Abid AD, Kanematsu M, Young TM, Kennedy IM (2013) Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci Technol 47(2):169–176 doi.org/10.1080/02786826.2012.735380 CrossRefPubMedGoogle Scholar
  2. Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29:208–213. doi: 10.1016/j.jclepro.2012.01.029 CrossRefGoogle Scholar
  3. Chena R, Zhia C, Yanga H, Bandoa Y, Zhangb Z, Sugiura N, Golberga D (2011) Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359(1):261–268. doi: 10.1016/j.jcis.2011.02.071 CrossRefGoogle Scholar
  4. Du Y, Fan H, Wang L, Wang J, Wu J, Dai H (2013) Alpha-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. J Mater Chem A 1:7729–7737. doi: 10.1039/C3TA11124E CrossRefGoogle Scholar
  5. Gang DD, Deng B, Lin L (2010) As(III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161. doi: 10.1016/j.jhazmat.2010.06.008 CrossRefPubMedGoogle Scholar
  6. Grafe M, Eick M, Grossi PR (2001) Adsorption of Arsenate (V) and Arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65:1680–1687. doi: 10.2136/sssaj2001.1680 CrossRefGoogle Scholar
  7. International Standard/American National Standard (NSF/ANSI 53–2011)-Drinking water treatment units-Health effectsGoogle Scholar
  8. Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated ground waters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325. doi: 10.1016/j.jenvman.2015.07.020 CrossRefGoogle Scholar
  9. Jiang W, Lin S, Chang CH, Ji Z, Sun B, Wang X, Li R, Pon N, Xia T, Nel AE, Gupta A, Yunus M, Sankararamakrishnan N (2013) Chitosan- and Iron–Chitosan-coated sand filters: a cost-effective approach for enhanced arsenic removal. Ind Eng Chem Res 52(5):2066–2072. doi: 10.1021/ie302428z CrossRefGoogle Scholar
  10. Katsoyiannis I, Zouboulis A (2003) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36(20):5141–5155. doi: 10.1016/S0043-1354(02)00236-1 CrossRefGoogle Scholar
  11. Liu B, Wang D, Li H, Wang L, Zhang L (2010) As(III) removal from aqueous solution using a-Fe2O3-impregnated Chitosan beads. Int Conf Digital Manuf Autom 1:289–292. doi: 10.1109/ICDMA.2010.320 Google Scholar
  12. Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36. doi: 10.1016/j.microc.2011.10.001 CrossRefGoogle Scholar
  13. Maji SK, Kao YH, Wang CJ, Lu GS, Wu JJ, Liu CW (2012) Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater. Chem Eng J 203:285–293. doi: 10.1016/j.cej.2012.07.033 CrossRefGoogle Scholar
  14. Martinson CA, Reddy KJ (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336(2):406–411. doi: 10.1016/j.jcis.2009.04.075 CrossRefPubMedGoogle Scholar
  15. Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71–75. doi: 10.1016/j.stam.2006.10.005 CrossRefGoogle Scholar
  16. Meng X, Bang S, Korfiatis GP (2000) Effect of silicate, sulfate and carbonate on arsenic removal by ferric chloride. Water Res 34(4):1255–1261. doi: 10.1016/S0043-1354(99)00272-9 CrossRefGoogle Scholar
  17. Mohan D, Pittman C (2007) Arsenic removal from water/wastewater using adsorbents -a critical review. J Hazard Mater 142(1–2):1–53. doi: 10.1016/j.jhazmat.2007.01.006 CrossRefPubMedGoogle Scholar
  18. Morilloa D, Uheidab A, Péreza G, Muhammedb M, Valientea M (2015) Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 438:227–234. doi: 10.1016/j.jcis.2014.10.005 CrossRefGoogle Scholar
  19. Mostafa MG, Hoinkis J (2012) Nanoparticle adsorbents for arsenic removal from drinking water: A review. Int J Environ Sci Manag Eng Res 1(1):20–31Google Scholar
  20. Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338CrossRefPubMedGoogle Scholar
  21. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49 15680760 CrossRefPubMedGoogle Scholar
  22. Pajany YM, Hurel C, Marmier N, Romeo M (2009) Arsenic adsorption onto hematite and goethite. C R Chim 12(8):876–881. doi: 10.1016/j.crci.2008.10.012 CrossRefGoogle Scholar
  23. Pajany YM, Hurel C, Marmier N, Romeo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99. doi: 10.1016/j.desal.2011.07.046 CrossRefGoogle Scholar
  24. Ramos AD, Chavan K, Garcia V, Jimeno G, Albo J, Marathe KV, Yadav GD, Irabien A (2014) Arsenic removal from natural waters by adsorption or ion exchange: an environmental sustainability assessment. Ind Eng Chem Res 53(49):18920–18927. doi: 10.1021/ie4044345 CrossRefGoogle Scholar
  25. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of Arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29(3):281–313. doi: 10.1080/10643389991259227 CrossRefGoogle Scholar
  26. Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47(10):3411–3421. doi: 10.1016/j.watres.2013.03.035 CrossRefPubMedGoogle Scholar
  27. Shankar S, Shanker U, Shikha U (2014) Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:1–18  http://dx.doi.org/10.1155/2014/304524 CrossRefGoogle Scholar
  28. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759. doi: 10.1016/j.envint.2009.01.005 CrossRefPubMedGoogle Scholar
  29. Sharma VK, Zboril R, Verma RS (2015) Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 48(2):182–191. doi: 10.1021/ar5004219 CrossRefPubMedGoogle Scholar
  30. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270. doi: 10.1016/j.ecoenv.2014.10.009 CrossRefPubMedGoogle Scholar
  31. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103 PMCID: PMC2560840PubMedPubMedCentralGoogle Scholar
  32. Spayd SE, Robson MG, Xie R, Buckley BT (2012) Importance of Arsenic speciation in populations exposed to Arsenic in drinking water. Hum Ecol Risk Assess 18(6):1271–1291. doi: 10.1080/10807039.2012.722824 CrossRefGoogle Scholar
  33. Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O (2007) A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for Arsenic removal from drinking water. Environ Eng Sci 24(1):104–112. doi: 10.1089/ees.2007.24.104 CrossRefGoogle Scholar
  34. Tara MC, Hayes KF, Raskin L (2013) Arsenic waste management: a critical review of testing and disposal of Arsenic-bearing solid wastes generated during Arsenic removal from drinking water. Environ Sci Technol 47:10799–10812 doi.org/10.1021/es401749b CrossRefGoogle Scholar
  35. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with Arsenic exposure. Toxicol Pathol 31(6):575–588. doi: 10.1080/01926230390242007 PubMedGoogle Scholar
  36. Thomas DJ (2015) In: States JC (ed) The chemistry and metabolism of arsenic: Exposure sources, health risks and mechanisms of toxicity. Wiley, Hoboken. doi: 10.1002/9781118876992.ch4 CrossRefGoogle Scholar
  37. Vaclavikova M, Gallios G, Hredzak S, Jakabsky S (2008) Removal of arsenic from water streams: an overview of available techniques. Clean Techn Environ Policy 10(1):89–95. doi: 10.1007/s10098-007-0098-3 CrossRefGoogle Scholar
  38. Vadahanambi S, Lee SH, Kim WJ, Oh IK (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47(18):10510–10517. doi: 10.1021/es401389g PubMedGoogle Scholar
  39. Vu KB, Kaminski MD, Nunez L (2003) Review of Arsenic removal technologies for contaminated ground waters (ANL-CMT-03/2) Argonne National Laboratory. doi: 10.2172/815660
  40. Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198(3):243–252. doi: 10.1016/j.taap.2003.10.022 CrossRefPubMedGoogle Scholar
  41. Zaspalis V, Pagana A, Sklari S (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination 217(1–3):167–180. doi: 10.1016/j.desal.2007.02.011 CrossRefGoogle Scholar
  42. Zhanga G, Rena Z, Zhangc X, Chena J (2013) Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47(12):4022–4031. doi: 10.1016/j.watres.2012.11.059 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Prabhat Parida
    • 1
  • Mayura Lolage
    • 1
  • Ashwini Angal
    • 1
  • Debabrata Rautaray
    • 1
    Email author
  1. 1.TATA Chemicals Innovation CentrePuneIndia

Personalised recommendations