Active Nanocomposites in Food Contact Materials

  • Marina RamosEmail author
  • Alfonso Jiménez
  • María Carmen Garrigós
Part of the Sustainable Agriculture Reviews book series (SARV, volume 24)


The traditional application of food packaging materials as mere containers without food interaction has changed to the new concept of active packaging, where interactions between food, packaging materials and the environment increase food quality and shelf-life. This concept takes also into consideration the consumer safety and the nutritional characteristics of food. This has led to the design of active nanocomposites that improve the structural integrity and barrier properties of the packaging materials by the addition of nanomaterials such as nanoclays or metal nanoparticles, and that also increase their antimicrobial and antioxidant performance sing active additives and nanofillers. Here we review active nanocomposites in food packaging. We discuss the relevance, advantages, and limitations of active nanocomposites with respect to their safety and migration regulations.


Nanocomposites Active packaging Biodegradable and bio-based polymers Nanofillers Metallic nanoparticles Nanoclays Active nanocomposites Antimicrobial activity Antioxidant activity 



Authors would like to thank Spanish Ministry of Economy and Competitiveness for financial support (MAT-2015-59242-C2-2-R). Marina Ramos would like to thank University of Alicante (Spain) for UAFPU2011-48539721S pre-doctoral research grant.


  1. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350. doi: 10.1016/j.jfoodeng.2012.02.012 CrossRefGoogle Scholar
  2. Ahmed MJ, Murtaza G, Mehmood A, Bhatti TM (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia Laureola: characterization and antibacterial activity. Mater Lett 153:10–13. doi: 10.1016/j.matlet.2015.03.143 CrossRefGoogle Scholar
  3. AINIA, EOI (2015) Tendencias En La Tecnología De Envasado Activo. Informe De Vigilancia Tecnológica. Ainia Centro Tecnológico and EOI Escuela De Organización Industrial. Last accessed Sept 2015
  4. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36:1–7. doi: 10.1016/j.foodcont.2013.07.037 CrossRefGoogle Scholar
  5. Aldred EM, Buck C, Vall K (2009) Chapter 29 – Antimicrobials. In: Vall EMaBB (ed) Pharmacology. Churchill Livingstone, Edinburgh, pp 217–221Google Scholar
  6. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63. doi: 10.1016/S0927-796X(00)00012-7 CrossRefGoogle Scholar
  7. Amenta V, Aschberger K, Arena M et al. (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in Eu and Non-Eu countries. Regul Toxicol Pharmacol 73:463–476. doi: 10.1016/j.yrtph.2015.06.016 PubMedCrossRefGoogle Scholar
  8. Amorati R, Valgimigli L (2015) Advantages and limitations of common testing methods for antioxidants. Free Radic Res 49:633–649. doi: 10.3109/10715762.2014.996146 PubMedCrossRefGoogle Scholar
  9. Amorati R, Foti MC, Valgimigli L (2013) Antioxidant activity of essential oils. J Agric Food Chem 61:10835–10847. doi: 10.1021/jf403496k PubMedCrossRefGoogle Scholar
  10. Anbinder PS, Peruzzo PJ, Martino MN, Amalvy JI (2015) Effect of antioxidant active films on the oxidation of Soybean oil monitored by fourier transform infrared spectroscopy. J Food Eng 151:43–50. doi: 10.1016/j.jfoodeng.2014.11.008 CrossRefGoogle Scholar
  11. Araújo A, Botelho G, Oliveira M, Machado AV (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150. doi: 10.1016/j.clay.2013.12.005 CrossRefGoogle Scholar
  12. Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85. doi: 10.1016/j.foodchem.2014.05.139 PubMedCrossRefGoogle Scholar
  13. Barbosa-Pereira L, Cruz JM, Sendón R et al. (2013) Development of antioxidant active films containing tocopherols to extend the shelf life of fish. Food Control 31:236–243. doi: 10.1016/j.foodcont.2012.09.036 CrossRefGoogle Scholar
  14. Bastarrachea L, Dhawan S, Sablani S (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng. Rev. 3:79–93. doi: 10.1007/s12393-011-9034-8 CrossRefGoogle Scholar
  15. Beltrán A, Valente AJM, Jiménez A, Garrigós MC (2014) Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. J Agric Food Chem 62:2244–2252. doi: 10.1021/jf405111a PubMedCrossRefGoogle Scholar
  16. Bodaghi H, Mostofi Y, Oromiehie A, Ghanbarzadeh B, Hagh ZG (2015) Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J Appl Polym Sci 132. doi: 10.1002/app.41764
  17. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155. doi: 10.1016/j.progpolymsci.2008.10.002 CrossRefGoogle Scholar
  18. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910–R923. doi: 10.1111/1750-3841.12861 PubMedCrossRefGoogle Scholar
  19. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022 PubMedCrossRefGoogle Scholar
  20. Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam A 27:1617–1626. doi: 10.1080/19440049.2010.506601 CrossRefGoogle Scholar
  21. Calo JR, Crandall PG, O'bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems – a review. Food Control 54:111–119. doi: 10.1016/j.foodcont.2014.12.040 CrossRefGoogle Scholar
  22. Cao L, Si JY, Liu Y et al. (2009) Essential oil composition, antimicrobial and antioxidant properties of Mosla Chinensis maxim. Food Chem 115:801–805. doi: 10.1016/j.foodchem.2008.12.064 CrossRefGoogle Scholar
  23. Ćavar Zeljković S, Maksimović M (2015) Chemical composition and bioactivity of essential oil from thymus species in Balkan Peninsula. Phytochem Rev 14:335–352. doi: 10.1007/s11101-014-9378-9 CrossRefGoogle Scholar
  24. Chung YL, Ansari S, Estevez L et al. (2010) Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr Polym 79:391–396. doi: 10.1016/j.carbpol.2009.08.021 CrossRefGoogle Scholar
  25. Commission Regulation (EC) No 450/2009. Active and intelligent materials and articles intended to come into contact with foodGoogle Scholar
  26. Commission Regulation (EU) No 10/2011. Plastic materials and articles intended to come into contact with foodGoogle Scholar
  27. Costa SS, Druzian JI, Machado BAS, De Souza CO, Guimaraes AG (2014) Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis. PLoS One 9. doi: 10.1371/journal.pone.0112554
  28. Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397. doi: 10.1016/j.foodcont.2013.04.042 CrossRefGoogle Scholar
  29. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol 24:30–46. doi: 10.1016/j.tifs.2011.10.006 CrossRefGoogle Scholar
  30. Dainelli D, Gontard N, Spyropoulos D, Van Den Beuken EZ, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112. doi: 10.1016/j.tifs.2008.09.011 CrossRefGoogle Scholar
  31. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135. doi: 10.1016/j.cis.2011.05.008 CrossRefGoogle Scholar
  32. De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi: 10.1016/j.foodres.2009.03.019 CrossRefGoogle Scholar
  33. De Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69. doi: 10.1016/j.tifs.2012.11.006 CrossRefGoogle Scholar
  34. Dias MV, Machado Azevedo V, Borges SV et al. (2014) Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol. Food Chem 165:323–329. doi: 10.1016/j.foodchem.2014.05.120 PubMedCrossRefGoogle Scholar
  35. Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22. doi: 10.1016/j.fct.2013.08.014 PubMedCrossRefGoogle Scholar
  36. Efrati R, Natan M, Pelah A et al. (2014) The combined effect of additives and processing on the thermal stability and controlled release of essential oils in antimicrobial films. J Appl Polym Sci 131:40564. doi: 10.1002/app.40564 Google Scholar
  37. EFSA (2011) Scientific committee. Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140–2176. doi: 10.2903/j.efsa.2011.2140 CrossRefGoogle Scholar
  38. Erem AD, Ozcan G, Erem H, Skrifvars M (2013) Antimicrobial activity of poly(L-lactide acid)/silver nanocomposite fibers. Text Res J 83:2111–2117. doi: 10.1177/0040517513481875 CrossRefGoogle Scholar
  39. European-Bioplastics-Association (2014) European bioplastics. Driving the evolution of plastics. Last accessed Sept 2015
  40. European-Bioplastics-Association (2015) Bioplastics packaging – combining performance with sustainability.Pdf. Last accessed Sept 2015
  41. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647. doi: 10.1007/s11947-012-0944-0 CrossRefGoogle Scholar
  42. Feng QL, Wu J, Chen GQ et al. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia Coli and Staphylococcus Aureus. J Biomed Mater Res 52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>;2-3 PubMedCrossRefGoogle Scholar
  43. Fonseca C, Ochoa A, Ulloa MT et al. (2015) Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater Sci Eng C 57:314–320. doi: 10.1016/j.msec.2015.07.069 CrossRefGoogle Scholar
  44. Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124. doi: 10.1016/j.jfoodeng.2013.03.025 CrossRefGoogle Scholar
  45. Fortunati E, Rinaldi S, Peltzer M et al. (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133. doi: 10.1016/j.carbpol.2013.10.055 PubMedCrossRefGoogle Scholar
  46. Fortunati E, Luzi F, Puglia D et al. (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia Oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447. doi: 10.1016/j.indcrop.2015.01.075 CrossRefGoogle Scholar
  47. Fuciños C, Míguez M, Cerqueira M et al. (2015) Functional characterisation and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films. Food Bioprocess Technol 8:1430–1441. doi: 10.1007/s11947-015-1506-z CrossRefGoogle Scholar
  48. Fukushima K, Tabuani D, Abbate C (2011) Chapter 5 biopolymer-based nanocomposites. In: Sharma SK, Mudhoo A (eds) A handbook of applied biopolymer technology: synthesis, degradation and applications. The Royal Society of Chemistry, Cambridge, pp 129–148CrossRefGoogle Scholar
  49. Fukushima K, Giménez E, Cabedo L, Lagarón JM, Feijoo JL (2012) Biotic degradation of poly(DL-lactide) based nanocomposites. Polym Degrad Stab 97:1278–1284. doi: 10.1016/j.polymdegradstab.2012.05.029 CrossRefGoogle Scholar
  50. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549. doi: 10.1016/j.reactfunctpolym.2013.01.003 CrossRefGoogle Scholar
  51. Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 51:227–240. doi: 10.1016/j.foodhyd.2015.05.024 CrossRefGoogle Scholar
  52. Gómez-Estaca J, López-De-Dicastillo C, Hernández-Muñoz P, Catalá R, Gavara R (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. doi: 10.1016/j.tifs.2013.10.008 CrossRefGoogle Scholar
  53. Gorrasi G (2015) Dispersion of Halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53. doi: 10.1016/j.carbpol.2015.03.050 PubMedCrossRefGoogle Scholar
  54. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429. doi: 10.1016/j.foodcont.2014.05.047 CrossRefGoogle Scholar
  55. Huang J-Y, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45:187–199. doi: 10.1016/j.tifs.2015.07.002 CrossRefGoogle Scholar
  56. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci F 9:552–571. doi: 10.1111/j.1541-4337.2010.00126.x CrossRefGoogle Scholar
  57. Jamshidian M, Tehrany E, Desobry S (2013) Antioxidants release from solvent-cast PLA film: investigation of PLA antioxidant-active packaging. Food Bioprocess Technol 6:1450–1463. doi: 10.1007/s11947-012-0830-9 CrossRefGoogle Scholar
  58. Jin T, He Y (2011) Antibacterial activities of Magnesium Oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13:6877–6885. doi: 10.1007/s11051-011-0595-5 CrossRefGoogle Scholar
  59. Jokar M, Abdul Rahman R, Ibrahim NA, Abdullah LC, Tan CP (2010) Melt production and antimicrobial efficiency of Low-Density Polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol:1–10. doi: 10.1007/s11947-010-0329-1
  60. Jollands M, Gupta RK (2010) Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J Appl Polym Sci 118:1489–1493. doi: 10.1002/app.32475 Google Scholar
  61. Kanmani P, Rhim JW (2014a) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing Agnps and Nanoclay. Food Hydrocoll 35:644–652. doi: 10.1016/j.foodhyd.2013.08.011 CrossRefGoogle Scholar
  62. Kanmani P, Rhim JW (2014b) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169. doi: 10.1016/j.foodchem.2013.10.047 PubMedCrossRefGoogle Scholar
  63. Keshtkar M, Nofar M, Park CB, Carreau PJ (2014) Extruded PLA/clay nanocomposite foams blown with supercritical Co2. Polymer 55:4077–4090. doi: 10.1016/j.polymer.2014.06.059 CrossRefGoogle Scholar
  64. Kim JS, Kuk E, Yu KN et al. (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. doi: 10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  65. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J Food Sci 76:R164–R177. doi: 10.1111/j.1750-3841.2011.02384.x PubMedCrossRefGoogle Scholar
  66. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT-Food Sci Technol 50:432–438. doi: 10.1016/j.lwt.2012.08.023 CrossRefGoogle Scholar
  67. Lavorgna M, Attianese I, Buonocore GG et al. (2014) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392. doi: 10.1016/j.carbpol.2013.11.026 PubMedCrossRefGoogle Scholar
  68. Li J-H, Miao J, Wu J-L, Chen S-F, Zhang Q-Q (2014) Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll 37:166–173. doi: 10.1016/j.foodhyd.2013.10.015 CrossRefGoogle Scholar
  69. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  70. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29. doi: 10.1016/j.tifs.2011.10.001 CrossRefGoogle Scholar
  71. López-Gómez A, Fernández P, Palop A et al. (2009) Food safety engineering: an emergent perspective. Food Eng Rev 1:84–104. doi: 10.1007/s12393-009-9005-5 CrossRefGoogle Scholar
  72. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi: 10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  73. Manzanarez-López F, Soto-Valdez H, Auras R, Peralta E (2011) Release of α-tocopherol from poly(lactic acid) films, and its effect on the oxidative stability of Soybean oil. J Food Eng 104:508–517. doi: 10.1016/j.jfoodeng.2010.12.029 CrossRefGoogle Scholar
  74. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. doi: 10.1002/ffj.2019 CrossRefGoogle Scholar
  75. Mastelic J, Jerkovic I, Blazevic I et al. (2008) Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem 56:3989–3996. doi: 10.1021/jf073272v PubMedCrossRefGoogle Scholar
  76. Mellinas C, Valdés A, Ramos M et al. (2015) Active edible films: current state and future trends. J Appl Polym Sci 133(2):In press. doi: 10.1002/app.42631
  77. Mihaly Cozmuta A, Peter A, Mihaly Cozmuta L et al. (2015) Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packag Technol Sci 28:271–284. doi: 10.1002/pts.2103 CrossRefGoogle Scholar
  78. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167. doi: 10.1016/j.tifs.2014.09.009 CrossRefGoogle Scholar
  79. Moon JK, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57:1655–1666. doi: 10.1021/jf803537k PubMedCrossRefGoogle Scholar
  80. Munteanu B, Aytac Z, Pricope G, Uyar T, Vasile C (2014) Polylactic acid (PLA)/silver-Np/vitamin E bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J Nanopart Res 16:1–12. doi: 10.1007/s11051-014-2643-4 CrossRefGoogle Scholar
  81. Muriel-Galet V, Cran MJ, Bigger SW, Hernández-Muñoz P, Gavara R (2015) Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. J Food Eng 149:9–16. doi: 10.1016/j.jfoodeng.2014.10.007 CrossRefGoogle Scholar
  82. Noronha CM, De Carvalho SM, Lino RC, Barreto PLM (2014) Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem 159:529–535. doi: 10.1016/j.foodchem.2014.02.159 PubMedCrossRefGoogle Scholar
  83. Olivares-Maldonado Y, Ramírez-Vargas E, Sánchez-Valdés S et al. (2014) Effect of organoclay structure characteristics on properties of ternary PP-EP/Eva/nanoclay blend systems. Polym Compos 35:2241–2250. doi: 10.1002/pc.22889 CrossRefGoogle Scholar
  84. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303. doi: 10.1016/j.aaspro.2014.11.042 CrossRefGoogle Scholar
  85. Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy 2014:6. doi: 10.1155/2014/945930 CrossRefGoogle Scholar
  86. Pagno CH, Costa TMH, De Menezes EW et al. (2015) Development of active biofilms of Quinoa (Chenopodium Quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem 173:755–762. doi: 10.1016/j.foodchem.2014.10.068 PubMedCrossRefGoogle Scholar
  87. Peltzer M, Navarro R, López J, Jiménez A (2010) Evaluation of the melt stabilization performance of hydroxytyrosol (3,4-dihydroxy-phenylethanol) in Polypropylene. Polym Degrad Stab 95:1636–1641. doi: 10.1016/j.polymdegradstab.2010.05.021 CrossRefGoogle Scholar
  88. Plastics-Europe (2015) Plastics – the facts 2014/2015. An analysis of European plastics production, demand and waste Data.Pdf. Last accessed Sept 2015
  89. Poças MF, Oliveira JC, Brandsch R, Hogg T (2012) Analysis of mathematical models to describe the migration of additives from packaging plastics to foods. J Food Process Eng 35:657–676. doi: 10.1111/j.1745-4530.2010.00612.x CrossRefGoogle Scholar
  90. Priolo MA, Holder KM, Gamboa D, Grunlan JC (2011) Influence of clay concentration on the gas barrier of clay–polymer nanobrick wall thin film assemblies. Langmuir 27:12106–12114. doi: 10.1021/la201584r PubMedCrossRefGoogle Scholar
  91. Qin Y-Y, Zhang Z-H, Li L et al. (2015) Physio-mechanical properties of an active chitosan film incorporated with montmorillonite and natural antioxidants extracted from pomegranate rind. J Food Sci Technol 52:1471–1479. doi: 10.1007/s13197-013-1137-1 PubMedCrossRefGoogle Scholar
  92. Quilaqueo Gutiérrez M, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymethylcellulose–Montmorillonite nanocomposite films activated with Murta (Ugni Molinae Turcz) leaves extract. Carbohydr Polym 87:1495–1502. doi: 10.1016/j.carbpol.2011.09.040 CrossRefGoogle Scholar
  93. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi: 10.1016/j.biotechadv.2008.09.002 PubMedCrossRefGoogle Scholar
  94. Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373. doi: 10.1016/j.indcrop.2015.03.015 CrossRefGoogle Scholar
  95. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng 109:513–519. doi: 10.1016/j.jfoodeng.2011.10.031 CrossRefGoogle Scholar
  96. Ramos M, Fortunati E, Peltzer M et al. (2014a) Influence of thymol and silver nanoparticles on the degradation of Poly(Lactic Acid) based nanocomposites: thermal and morphological properties. Polym Degrad Stab 108:158–165. doi: 10.1016/j.polymdegradstab.2014.02.011 CrossRefGoogle Scholar
  97. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014b) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155. doi: 10.1016/j.foodchem.2014.04.026 PubMedCrossRefGoogle Scholar
  98. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. doi: 10.1016/j.progpolymsci.2013.05.014 CrossRefGoogle Scholar
  99. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006 CrossRefGoogle Scholar
  100. Regulation (EC) No 1935/2004. Materials and articles intended to come into contact with foodGoogle Scholar
  101. Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. doi: 10.3390/ma6062295 CrossRefGoogle Scholar
  102. Restuccia D, Spizzirri UG, Parisi OI et al. (2010) New Eu regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435. doi: 10.1016/j.foodcont.2010.04.028 CrossRefGoogle Scholar
  103. Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. doi: 10.1080/10408390600846366 PubMedCrossRefGoogle Scholar
  104. Rhim J-W, Wang L-F (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 97–98:174–181. doi: 10.1016/j.clay.2014.05.025 CrossRefGoogle Scholar
  105. Rhim J-W, Park H-M, Ha C-S (2013a) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. doi: 10.1016/j.progpolymsci.2013.05.008 CrossRefGoogle Scholar
  106. Rhim JW, Wang LF, Hong SI (2013b) Preparation and characterization of Agar/Silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll 33:327–335. doi: 10.1016/j.foodhyd.2013.04.002 CrossRefGoogle Scholar
  107. Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153:36–53. doi: 10.1016/j.chroma.2007.01.134 PubMedCrossRefGoogle Scholar
  108. Rodríguez FJ, Galotto MJ, Guarda A, Bruna JE (2012) Modification of cellulose acetate films using nanofillers based on organoclays. J Food Eng 110:262–268. doi: 10.1016/j.jfoodeng.2011.05.004 CrossRefGoogle Scholar
  109. Sanches-Silva A, Costa D, Albuquerque TG et al. (2014) Trends in the use of natural antioxidants in active food packaging: a review. Food Addit. Contam. A 31:374–395. doi: 10.1080/19440049.2013.879215 CrossRefGoogle Scholar
  110. Sánchez Aldana D, Andrade-Ochoa S, Aguilar CN, Contreras-Esquivel JC, Nevárez-Moorillón GV (2015) Antibacterial activity of Pectic-based edible films incorporated with mexican lime essential oil. Food Control 50:907–912. doi: 10.1016/j.foodcont.2014.10.044 CrossRefGoogle Scholar
  111. Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21:528–536. doi: 10.1016/j.tifs.2010.07.008 CrossRefGoogle Scholar
  112. Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils in bioactive edible coatings: a review. Food Eng. Rev. 3:1–16. doi: 10.1007/s12393-010-9031-3 CrossRefGoogle Scholar
  113. Sánchez-Moreno C (2002) Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8:121–137. doi: 10.1106/108201302026770 CrossRefGoogle Scholar
  114. Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Sci. Technol. 60:583–592. doi: 10.1016/j.lwt.2014.08.046 CrossRefGoogle Scholar
  115. Scatto M, Salmini E, Castiello S et al. (2013) Plasticized and nanofilled poly(lactic acid)-based cast films: effect of plasticizer and organoclay on processability and final properties. J Appl Polym Sci 127:4947–4956. doi: 10.1002/app.38042 CrossRefGoogle Scholar
  116. Schreiber SB, Bozell JJ, Hayes DG, Zivanovic S (2013) Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll 33:207–214. doi: 10.1016/j.foodhyd.2013.03.006 CrossRefGoogle Scholar
  117. Severino R, Ferrari G, Vu KD et al. (2015) Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia Coli O157:H7 and Salmonella Typhimurium on green beans. Food Control 50:215–222. doi: 10.1016/j.foodcont.2014.08.029 CrossRefGoogle Scholar
  118. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi: 10.1016/j.biotechadv.2007.12.005 PubMedCrossRefGoogle Scholar
  119. Shameli K, Ahmad MB, Yunus WMZW et al. (2010) Silver/Poly (Lactic Acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579. doi: 10.2147/IJNS12007 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271. doi: 10.1016/j.foodhyd.2014.12.001 CrossRefGoogle Scholar
  121. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96. doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  122. Shemesh R, Goldman D, Krepker M et al. (2015a) LDPE/clay/carvacrol nanocomposites with prolonged antimicrobial activity. J Appl Polym Sci 132. doi: 10.1002/app.41261
  123. Shemesh R, Krepker M, Goldman D et al. (2015b) Antibacterial and antifungal LDPE films for active packaging. Polym Adv Technol 26:110–116. doi: 10.1002/pat.3434 CrossRefGoogle Scholar
  124. Shojaee-Aliabadi S, Mohammadifar MA, Hosseini H et al. (2014) Characterization of nanobiocomposite Kappa-Carrageenan film with Zataria Multiflora essential oil and nanoclay. Int J Biol Macromol 69:282–289. doi: 10.1016/j.ijbiomac.2014.05.015 PubMedCrossRefGoogle Scholar
  125. Silva-Weiss A, Ihl M, Sobral PJA, Gómez-Guillén MC, Bifani V (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng. Rev. 5:200–216. doi: 10.1007/s12393-013-9072-5 CrossRefGoogle Scholar
  126. Singh P, Wani AA, Saengerlaub S (2011) Active packaging of food products: recent trends. Nutr Food Sci 41:249–260. doi: 10.1108/00346651111151384 CrossRefGoogle Scholar
  127. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Poly Sci (Oxford) 28:1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002 CrossRefGoogle Scholar
  128. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. doi: 10.1016/j.tifs.2008.07.003 CrossRefGoogle Scholar
  129. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi: 10.1016/j.jcis.2004.02.012 PubMedCrossRefGoogle Scholar
  130. Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Addit. Contam. A 28:1758–1762. doi: 10.1080/19440049.2011.603705 Google Scholar
  131. Srinivasan K (2012) Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr 54:352–372. doi: 10.1080/10408398.2011.585525 CrossRefGoogle Scholar
  132. Sung SY, Sin LT, Tee TT et al. (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33:110–123. doi: 10.1016/j.tifs.2013.08.001 CrossRefGoogle Scholar
  133. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218. doi: 10.1016/j.foodcont.2010.02.003 CrossRefGoogle Scholar
  134. Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B et al. (2015) Micro- and nanoparticles by electrospray: advances and applications in foods. J Agric Food Chem 63:4699–4707. doi: 10.1021/acs.jafc.5b01403 PubMedCrossRefGoogle Scholar
  135. Torres A, Romero J, Macan A, Guarda A, Galotto MJ (2014) Near critical and supercritical impregnation and kinetic release of Thymol in LLDPE films used for food packaging. J Supercrit Fluids 85:41–48. doi: 10.1016/j.supflu.2013.10.011 CrossRefGoogle Scholar
  136. Tunç S, Duman O (2011) Preparation of active antimicrobial Methyl Cellulose/Carvacrol/Montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol. 44:465–472. doi: 10.1016/j.lwt.2010.08.018 CrossRefGoogle Scholar
  137. u Nisa I, Ashwar BA, Shah A et al. (2015) Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. J Food Sci Technol 52(11):7245–7253. doi: 10.1007/s13197-015-1859-3 CrossRefGoogle Scholar
  138. UNE-EN 13432:2000 (2000) Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packagingGoogle Scholar
  139. Valdés A, Mellinas AC, Ramos M, Garrigós MC, Jiménez A (2014) Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front Chem 2:1–10. doi: 10.3389/fchem.2014.00006 CrossRefGoogle Scholar
  140. Valdés A, Mellinas AC, Ramos M et al. (2015) Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv 5:40324–40335. doi: 10.1039/c4ra17286h CrossRefGoogle Scholar
  141. Vaverková M, Toman F, Adamcová D, Kotovicová J (2012) Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment. Ecol Chem Eng S 19:347–358. doi: 10.2478/v10216-011-0025-8 Google Scholar
  142. Viñas P, Campillo N (2014) Chapter 7 – gas chromatography–mass spectrometry analysis of polyphenols in foods. In: Watson RR (ed) Polyphenols in plants. Academic Press, San Diego, pp 103–157CrossRefGoogle Scholar
  143. Wen P, Zhu D-H, Wu H et al. (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376. doi: 10.1016/j.foodcont.2015.06.005 CrossRefGoogle Scholar
  144. Wu Y, Qin Y, Yuan M et al. (2014) Characterization of an antimicrobial poly(lactic acid) film prepared with poly(Ε-caprolactone) and thymol for active packaging. Polym Adv Technol 25:948–954. doi: 10.1002/pat.3332 CrossRefGoogle Scholar
  145. Xia Y, Rubino M, Auras R (2015) Release of surfactants from organo-modified montmorillonite into solvents: implications for polymer nanocomposites. Appl Clay Sci 105–106:107–112. doi: 10.1016/j.clay.2014.12.027 CrossRefGoogle Scholar
  146. Yang F, Manitiu M, Kriegel R, Kannan RM (2014) Structure, permeability, and rheology of supercritical CO2 dispersed polystyrene-clay nanocomposites. Polymer 55:3915–3924. doi: 10.1016/j.polymer.2014.05.020 CrossRefGoogle Scholar
  147. Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21:1–11. doi: 10.1007/s10965-014-0429-0 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marina Ramos
    • 1
    Email author
  • Alfonso Jiménez
    • 1
  • María Carmen Garrigós
    • 1
  1. 1.Analytical Chemistry, Nutrition & Food Sciences DepartmentUniversity of AlicanteAlicanteSpain

Personalised recommendations