Skip to main content

Impact and Application of Nutraceuticals on Inflammation-Induced Colorectal Cancer Development

  • Chapter
  • First Online:
Molecular Oncology: Underlying Mechanisms and Translational Advancements
  • 868 Accesses

Abstract

Chronic inflammation has been shown to contribute to several diseases including colorectal cancer, which is the third leading death cancer in the world. During the past several decades, scientific research on biology of inflammation-induced colorectal cancer has been raised to become a mainstream of biomedical investigation and pharmaceutical development. Due to the important role played by inflammation in common diseases, attempting to prevent or treat them by suppressing the cellular and chemical mediators is an active area of medical research. Most of the prevailing approaches include steroids, non-steroidal anti-inflammatory drugs and immune selective anti-inflammatory derivatives are fraught with side effects. There is an urgent need for an alternative, effective, and well-tolerated treatment with negative side effects, such as the natural compound therapy. Healthy diet includes low intake of carbohydrates and fats (high percentage of unsaturated fat), high intake of fruits and vegetables, and more physical excises. Moreover, bioactive compounds in food or diet, nutrients, are essential for the prevention of inflammation-induced colorectal cancer from in vitro cells and in vivo animal models, and loss of nutrients can lead to more serious illness. The mediators and signaling pathways of inflammation-induced colorectal cancer have been alleviated by the interaction with bioactive food components, which play a crucial role in the development, treatment or prevention of inflammation-induced colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOM/DSS:

Azoxymethane/dextran sulfate sodium

AP-1:

Activator protein-1

ARF:

Alternate reading frame

BBR:

Berberine

BFCs:

Bioactive food compounds

CD:

Crohn’s disease

COX-2:

Cyclooxygenase-2

CRC:

Colorectal cancer

CVD:

Cardiovascular diseases

EGCG:

Epigallocatechin gallate

ERK5:

Extracellular signal-regulated kinase-5

ERKs:

Extracellular signal-regulated kinases

GCSF:

Granulocyte stimulating factor

GI:

Gastrointestinal

GLA:

Gamma linolenic acid

IBD:

Inflammatory bowel disease

IFN:

Interferon

IL-:

Interleukin-

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

JNKs:

c-Jun NH2-terminal kinases

LPS:

lipopolysaccharides

MAPK:

Mitogen-activated protein kinases

MCSF:

Macrophage stimulating factors

NFκB:

Nuclear factor kappa B

Nrf-2:

Nuclear erythroid 2-related factor 2

PEITC:

Phenethyl isothiocyanate

PPARs:

Peroxisome proliferator-activated receptors

PYCARD:

PYD and CARD domain containing

ROS:

Reactive oxygen species

SEER:

Surveillance, epidemiology, and end results

SFN:

Sulforaphane

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

UC:

Ulcerative colitis

References

  1. Koosha S et al (2016) An association map on the effect of flavonoids on the signaling pathways in colorectal cancer. Int J Med Sci 13(5):374–385

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115(1):182–205

    Article  CAS  PubMed  Google Scholar 

  3. Rutter MD et al (2006) Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 130(4):1030–1038

    Article  PubMed  Google Scholar 

  4. Ekbom A et al (1991) The epidemiology of inflammatory bowel disease: a large, population-based study in Sweden. Gastroenterology 100(2):350–358

    Article  CAS  PubMed  Google Scholar 

  5. Rutter M et al (2004) Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126(2):451–459

    Article  PubMed  Google Scholar 

  6. O'Connor PM et al (2010) Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis 16(8):1411–1420

    Article  PubMed  Google Scholar 

  7. Sartor RB (2003) Clinical applications of advances in the genetics of IBD. Rev Gastroenterol Disord 3(Suppl 1):S9–17

    PubMed  Google Scholar 

  8. Rau O et al (2006) Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med 72(10):881–887

    Article  CAS  PubMed  Google Scholar 

  9. Campos FG et al (2003) Pharmacological nutrition in inflammatory bowel diseases. Nutr Hosp 18(2):57–64

    CAS  PubMed  Google Scholar 

  10. Bistrian BR (1999) Role of the systemic inflammatory response in the development of protein-energy malnutrition in inflammatory bowel disease. Nestle Nutr Workshop Ser Clin Perform Programme 2:1–6

    Article  CAS  PubMed  Google Scholar 

  11. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  12. Stierle DB et al (2011) Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-beta from induced inflammasomes. J Nat Prod 74(10):2273–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong YN et al (2010) Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Res 20(12):1289–1305

    Article  CAS  PubMed  Google Scholar 

  14. Touw IP et al (2000) Signaling mechanisms of cytokine receptors and their perturbances in disease. Mol Cell Endocrinol 160(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  15. Park MY, Kwon HJ, Sung MK (2009) Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci Biotechnol Biochem 73(4):828–832

    Article  CAS  PubMed  Google Scholar 

  16. Aalinkeel R et al (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68(16):1773–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Proia DA et al (2011) Multifaceted intervention by the Hsp90 inhibitor ganetespib (STA-9090) in cancer cells with activated JAK/STAT signaling. PLoS One 6(4):e18552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blank VC et al (2004) Antiproliferative activity of various flavonoids and related compounds: additive effect of interferon-alpha2b. Bioorg Med Chem Lett 14(1):133–136

    Article  CAS  PubMed  Google Scholar 

  19. Ji DB et al (2011) beta-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells. Mol Carcinog 50(12):945–960

    Article  CAS  PubMed  Google Scholar 

  20. Serwe A et al (2012) Inhibition of TGF-beta signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest New Drugs 30(3):898–915

    Article  CAS  PubMed  Google Scholar 

  21. Qin X et al (2010) Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine. J Immunol 185(3):1855–1863

    Article  CAS  PubMed  Google Scholar 

  22. Ruela-de-Sousa RR et al (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1:e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grossmann M et al (2000) The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 19(23):6351–6360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6(8):945–951

    Article  CAS  PubMed  Google Scholar 

  25. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441

    Article  CAS  PubMed  Google Scholar 

  26. Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25(51):6887–6899

    Article  CAS  PubMed  Google Scholar 

  27. Bremner P, Heinrich M (2002) Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol 54(4):453–472

    Article  CAS  PubMed  Google Scholar 

  28. Salminen A et al (2008) Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65(19):2979–2999

    Article  CAS  PubMed  Google Scholar 

  29. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265(5174):956–959

    Article  CAS  PubMed  Google Scholar 

  30. Scheinman RI et al (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270(5234):283–286

    Article  CAS  PubMed  Google Scholar 

  31. Straus DS et al (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A 97(9):4844–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paur I et al (2010) Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-kappaB in monocytes and in transgenic reporter mice. Cancer Prev Res (Phila) 3(5):653–663

    Article  Google Scholar 

  33. Chang CS et al (2010) Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33(1):46–57

    Article  CAS  PubMed  Google Scholar 

  34. Haddad JJ, Harb HL (2005) L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 42(9):987–1014

    Article  CAS  PubMed  Google Scholar 

  35. Panka DJ, Atkins MB, Mier JW (2006) Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clin Cancer Res 12(7 Pt 2):2371s–2375s

    Article  CAS  PubMed  Google Scholar 

  36. Meyer LH, Pap T (2005) MAPK signalling in rheumatoid joint destruction: can we unravel the puzzle? Arthritis Res Ther 7(5):177–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim AL et al (2006) Resveratrol inhibits proliferation of human epidermoid carcinoma A431 cells by modulating MEK1 and AP-1 signalling pathways. Exp Dermatol 15(7):538–546

    Article  CAS  PubMed  Google Scholar 

  38. Kong AN et al (2000) Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 23(1):1–16

    Article  CAS  PubMed  Google Scholar 

  39. Malemud CJ (2007) Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways. Curr Opin Pharmacol 7(3):339–343

    Article  CAS  PubMed  Google Scholar 

  40. Chen KH, Weng MS, Lin JK (2007) Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73(2):215–227

    Article  CAS  PubMed  Google Scholar 

  41. Lu Q, Qiu TQ, Yang H (2006) Ligustilide inhibits vascular smooth muscle cells proliferation. Eur J Pharmacol 542(1–3):136–140

    Article  CAS  PubMed  Google Scholar 

  42. Schonthaler HB, Guinea-Viniegra J, Wagner EF (2011) Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis 70(Suppl 1):i109–i112

    Article  CAS  PubMed  Google Scholar 

  43. Dillon S et al (2004) A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 172(8):4733–4743

    Article  CAS  PubMed  Google Scholar 

  44. Mitsuhashi M et al (2004) Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. J Leukoc Biol 76(2):322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  CAS  PubMed  Google Scholar 

  46. Erdelyi K et al (2005) Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 68(3):895–904

    CAS  PubMed  Google Scholar 

  47. Park S, Choi J (2010) Inhibition of beta-catenin/Tcf signaling by flavonoids. J Cell Biochem 110(6):1376–1385

    Article  CAS  PubMed  Google Scholar 

  48. Hirano T et al (2006) Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem Biophys Res Commun 340(1):1–7

    Article  CAS  PubMed  Google Scholar 

  49. Gopalakrishnan A et al (2006) Modulation of activator protein-1 (AP-1) and MAPK pathway by flavonoids in human prostate cancer PC3 cells. Arch Pharm Res 29(8):633–644

    Article  CAS  PubMed  Google Scholar 

  50. Mahata S et al (2011) Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol Cancer 10:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759

    Article  CAS  PubMed  Google Scholar 

  52. Liu J et al (2003) Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol Pharmacol 63(5):983–992

    Article  CAS  PubMed  Google Scholar 

  53. Ulrich S et al (2006) Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Res 66(14):7348–7354

    Article  CAS  PubMed  Google Scholar 

  54. Itoh K et al (2004) Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Mol Cell Biol 24(1):36–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Surh YJ (2008) NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr 17(Suppl 1):269–272

    CAS  PubMed  Google Scholar 

  56. Calixto JB et al (2004) Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70(2):93–103

    Article  CAS  PubMed  Google Scholar 

  57. Dvorak Z et al (2006) Differential effects of selected natural compounds with anti-inflammatory activity on the glucocorticoid receptor and NF-kappaB in HeLa cells. Chem Biol Interact 159(2):117–128

    Article  CAS  PubMed  Google Scholar 

  58. Aravindaram K, Yang NS (2010) Anti-inflammatory plant natural products for cancer therapy. Planta Med 76(11):1103–1117

    Article  CAS  PubMed  Google Scholar 

  59. Ye J, Keller JN (2010) Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY) 2(6):361–368

    Article  CAS  Google Scholar 

  60. Mraz M et al (2011) The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 96(4):E606–E613

    Article  CAS  PubMed  Google Scholar 

  61. Forsythe CE et al (2008) Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 43(1):65–77

    Article  CAS  PubMed  Google Scholar 

  62. Brand-Miller J, Buyken AE (2012) The glycemic index issue. Curr Opin Lipidol 23(1):62–67. doi:10.1097/MOL.0b013e32834ec705

    Article  CAS  PubMed  Google Scholar 

  63. Levitan EB et al (2008) Dietary glycemic index, dietary glycemic load, blood lipids, and C-reactive protein. Metabolism 57(3):437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Du H et al (2008) Glycemic index and glycemic load in relation to food and nutrient intake and metabolic risk factors in a Dutch population. Am J Clin Nutr 87(3):655–661

    CAS  PubMed  Google Scholar 

  65. Pittas AG et al (2006) The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity (Silver Spring) 14(12):2200–2209

    Article  CAS  Google Scholar 

  66. Neuhouser ML et al (2012) A low-glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. J Nutr 142(2):369–374

    Article  CAS  PubMed  Google Scholar 

  67. Schulze MB et al (2005) Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 82(3):675–684. quiz 714-5

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Djuric Z et al (2008) Design of a Mediterranean exchange list diet implemented by telephone counseling. J Am Diet Assoc 108(12):2059–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chrysohoou C et al (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the ATTICA study. J Am Coll Cardiol 44(1):152–158

    Article  PubMed  Google Scholar 

  70. Gu Y et al (2010) Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer's disease. J Alzheimers Dis 22(2):483–492

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Camargo A et al (2010) Gene expression changes in mononuclear cells from patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics 11(1):253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Owen RW et al (2000) Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112

    Article  CAS  PubMed  Google Scholar 

  73. Stark AH, Madar Z (2002) Olive oil as a functional food: epidemiology and nutritional approaches. Nutr Rev 60(6):170–176

    Article  PubMed  Google Scholar 

  74. Thomazella MC et al (2011) Effects of high adherence to mediterranean or low-fat diets in medicated secondary prevention patients. Am J Cardiol 108(11):1523–1529

    Article  PubMed  Google Scholar 

  75. Fan H et al (2002) Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol Heart Circ Physiol 282(5):H1778–H1786

    Article  CAS  PubMed  Google Scholar 

  76. Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact 91(2–3):91–100

    Article  CAS  PubMed  Google Scholar 

  77. Gonzalez-Gallego J et al (2010) Fruit polyphenols, immunity and inflammation. Br J Nutr 104(Suppl 3):S15–S27

    Article  CAS  PubMed  Google Scholar 

  78. Biswas SK et al (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7(1–2):32–41

    Article  CAS  PubMed  Google Scholar 

  79. Han SS et al (2002) Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 35(3):337–342

    CAS  PubMed  Google Scholar 

  80. Karlsen A et al (2007) Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 137(8):1951–1954

    CAS  PubMed  Google Scholar 

  81. Bakker GC et al (2010) An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr 91(4):1044–1059

    Article  CAS  PubMed  Google Scholar 

  82. Chun OK et al (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138(4):753–760

    CAS  PubMed  Google Scholar 

  83. Helmersson J et al (2009) Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br J Nutr 101(12):1775–1782

    Article  CAS  PubMed  Google Scholar 

  84. De Bacquer D et al (2006) Epidemiological evidence for an association between habitual tea consumption and markers of chronic inflammation. Atherosclerosis 189(2):428–435

    Article  CAS  PubMed  Google Scholar 

  85. Steptoe A et al (2007) The effects of chronic tea intake on platelet activation and inflammation: a double-blind placebo controlled trial. Atherosclerosis 193(2):277–282

    Article  CAS  PubMed  Google Scholar 

  86. Chu SL et al (2011) A randomized double-blind placebo-controlled study of Pu'er tea extract on the regulation of metabolic syndrome. Chin J Integr Med 17(7):492–498

    Article  PubMed  Google Scholar 

  87. Krahwinkel T, Willershausen B (2000) The effect of sugar-free green tea chew candies on the degree of inflammation of the gingiva. Eur J Med Res 5(11):463–467

    CAS  PubMed  Google Scholar 

  88. Nantz MP et al (2009) Standardized capsule of Camellia sinensis lowers cardiovascular risk factors in a randomized, double-blind, placebo-controlled study. Nutrition 25(2):147–154

    Article  PubMed  Google Scholar 

  89. Cho S-Y et al (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem 243(1):153–160

    Article  CAS  PubMed  Google Scholar 

  90. Comalada M et al (2005) In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 35(2):584–592

    Article  CAS  PubMed  Google Scholar 

  91. Dias AS et al (2005) Quercetin decreases oxidative stress, NF-kappa B activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 135(10):2299–2304

    CAS  PubMed  Google Scholar 

  92. Stewart LK et al (2008) Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6 J mice fed a high-fat diet. Metabolism 57(7 Suppl 1):S39–S46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ryu OH et al (2006) Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res Clin Pract 71(3):356–358

    Article  CAS  PubMed  Google Scholar 

  94. de Maat MP et al (2000) Consumption of black and green tea had no effect on inflammation, haemostasis and endothelial markers in smoking healthy individuals. Eur J Clin Nutr 54(10):757–763

    Article  PubMed  CAS  Google Scholar 

  95. Fukino Y et al (2005) Randomized controlled trial for an effect of green tea consumption on insulin resistance and inflammation markers. J Nutr Sci Vitaminol (Tokyo) 51(5):335–342

    Article  CAS  Google Scholar 

  96. Widlansky ME et al (2005) Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic Biol Med 38(4):499–506

    Article  CAS  PubMed  Google Scholar 

  97. Dominiak K et al (2010) Critical need for clinical trials: an example of a pilot human intervention trial of a mixture of natural agents protecting lymphocytes against TNF-alpha induced activation of NF-kappaB. Pharm Res 27(6):1061–1065

    Article  CAS  PubMed  Google Scholar 

  98. Srinivas NR (2009) Structurally modified 'dietary flavonoids': are these viable drug candidates for chemoprevention? Curr Clin Pharmacol 4(1):67–70

    Article  CAS  PubMed  Google Scholar 

  99. Zinke I et al (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21(22):6162–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rathee P et al (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 8(3):229–235

    Article  CAS  PubMed  Google Scholar 

  101. Ueda H, Yamazaki C, Yamazaki M (2002) Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 25(9):1197–1202

    Article  CAS  PubMed  Google Scholar 

  102. Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure—function relationships and the therapeutic potential for cancer. Curr Med Chem 17(17):1756–1768

    Article  CAS  PubMed  Google Scholar 

  103. Wang LS et al (2011) Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clin Cancer Res 17(3):598–610

    Article  CAS  PubMed  Google Scholar 

  104. Dey M et al (2006) In vitro and in vivo anti-inflammatory activity of a seed preparation containing phenethylisothiocyanate. J Pharmacol Exp Ther 317(1):326–333

    Article  CAS  PubMed  Google Scholar 

  105. Dey M et al (2010) Dietary phenethylisothiocyanate attenuates bowel inflammation in mice. BMC Chem Biol 10:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lee YM et al (2009) Benzyl isothiocyanate exhibits anti-inflammatory effects in murine macrophages and in mouse skin. J Mol Med (Berl) 87(12):1251–1261

    Article  CAS  Google Scholar 

  107. Wang LG et al (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46(1):24–31

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, Chakravarty S, Dey M (2013) Phenethylisothiocyanate alters site- and promoter-specific histone tail modifications in cancer cells. PLoS One 8(5):e64535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Myzak MC et al (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774

    Article  CAS  PubMed  Google Scholar 

  110. Myzak MC et al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232(2):227–234

    CAS  Google Scholar 

  111. Afman LA, Muller M (2012) Human nutrigenomics of gene regulation by dietary fatty acids. Prog Lipid Res 51(1):63–70

    Article  CAS  PubMed  Google Scholar 

  112. Dunn GA, Bale TL (2011) Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152(6):2228–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bird JJ et al (1998) Helper T cell differentiation is controlled by the cell cycle. Immunity 9(2):229–237

    Article  CAS  PubMed  Google Scholar 

  114. Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kau AL et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Turnbaugh PJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kemperman RA et al (2010) Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology 156(Pt 11):3224–3231

    Article  CAS  PubMed  Google Scholar 

  118. Arkadianos I et al (2007) Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lopez-Miranda J et al (1994) Effect of apolipoprotein E phenotype on diet-induced lowering of plasma low density lipoprotein cholesterol. J Lipid Res 35(11):1965–1975

    CAS  PubMed  Google Scholar 

  120. Sima A, Iordan A, Stancu C (2007) Apolipoprotein E polymorphism—a risk factor for metabolic syndrome. Clin Chem Lab Med 45(9):1149–1153

    Article  CAS  PubMed  Google Scholar 

  121. Barberger-Gateau P et al (2011) Dietary omega 3 polyunsaturated fatty acids and Alzheimer's disease: interaction with apolipoprotein E genotype. Curr Alzheimer Res 8(5):479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sarkkinen E et al (1998) Effect of apolipoprotein E polymorphism on serum lipid response to the separate modification of dietary fat and dietary cholesterol. Am J Clin Nutr 68(6):1215–1222

    CAS  PubMed  Google Scholar 

  123. Egert S et al (2010) Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr 140(2):278–284

    Article  CAS  PubMed  Google Scholar 

  124. Li Y et al (2011) Green tea consumption, inflammation and the risk of primary hepatocellular carcinoma in a Chinese population. Cancer Epidemiol 35(4):362–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Gasper AV et al (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82(6):1283–1291

    CAS  PubMed  Google Scholar 

  126. Seow A et al (1998) Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemiol Biomarkers Prev 7(9):775–781

    CAS  PubMed  Google Scholar 

  127. Chung FL et al (1998) A urinary biomarker for uptake of dietary isothiocyanates in humans. Cancer Epidemiol Biomarkers Prev 7(2):103–108

    CAS  PubMed  Google Scholar 

  128. Wang LI et al (2004) Dietary intake of Cruciferous vegetables, Glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 15(10):977–985

    Article  PubMed  Google Scholar 

  129. Joseph MA et al (2004) Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer 50(2):206–213

    Article  CAS  PubMed  Google Scholar 

  130. Tiihonen J et al (1999) Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type 1 alcoholism. Mol Psychiatry 4(3):286–289

    Article  CAS  PubMed  Google Scholar 

  131. Nielsen SE et al (1998) In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica 28(4):389–401

    Article  CAS  PubMed  Google Scholar 

  132. Strassburg CP et al (1999) UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology 116(1):149–160

    Article  CAS  PubMed  Google Scholar 

  133. Coughtrie MW et al (1998) Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 109(1–3):3–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, Y. (2017). Impact and Application of Nutraceuticals on Inflammation-Induced Colorectal Cancer Development. In: Farooqi, A., Ismail, M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_14

Download citation

Publish with us

Policies and ethics