Skip to main content

Investigation of Androgen Receptor Signaling Pathways with Epigenetic Machinery in Prostate Cancer

  • Chapter
  • First Online:
Molecular Oncology: Underlying Mechanisms and Translational Advancements

Abstract

Androgen receptor (AR) is a ligand-dependent transcription factor reportedly involved in regulation of wide ranging target genes. Rapidly emerging experimental evidence has provided detailed information related to 3D crystal structures of the ligand binding domain (LBD) and DNA binding domain (DBD) of AR.

Targeting of AR induced signaling cascade is assumed to be effective for treating castration-resistant prostate cancer (CRPC), which possesses resistance to the general anti-androgen therapy. The aggressiveness of cancer cells is induced by the interplay of multiple signal pathways, transcription factors and epigenetic machinery. To investigate how AR modulates transcriptional networks in prostate cancer cells, global analyses determining AR binding sites and androgen-regulated transcripts including coding and non-coding genes have been performed. In addition, diverse regulations of epigenetics such as histone modification and DNA methylation were found to be linked with the activation and repression of enhancers and promoters with AR recruitments. These regulatory mechanisms are interconnected strongly and regulate the gene expression in prostate cancer cells. In recent studies, many androgen-regulated genes have been shown to have important roles in the development of prostate cancer and clinical relevance as new biomarkers and therapy targets. In this chapter, we highlight those epigenetic mechanisms for AR activation by various factors, especially long non-coding RNA (lncRNA) and microRNA (miRNA). We also describe the molecular mechanism through which AR downstream signals induce tumor growth and inhibit apoptosis for developing CRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001

    PubMed  PubMed Central  Google Scholar 

  2. Debes JD, Tindall DJ (2004) Mechanism of androgen-refractory prostate cancer. N Engl J Med 351:1488–1490

    Article  CAS  PubMed  Google Scholar 

  3. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  CAS  PubMed  Google Scholar 

  4. Jenster G et al (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396–1404

    Article  CAS  PubMed  Google Scholar 

  5. Jenster G et al (1995) Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270:7341–7346

    Article  CAS  PubMed  Google Scholar 

  6. Callewaert L et al (2006) Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 66:543–553

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain NL et al (1996) Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J Biol Chem 271:26772–26778

    Article  CAS  PubMed  Google Scholar 

  8. Dehm SM et al (2007) Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion-independent prostate cancer cells. Cancer Res 67:10067–10077

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt LJ, Tindall DJ (2011) Steroid 5 alpha-reductase inhibitors targeting BPH and prostate cancer. J Steroid Biochem Mol Biol 125:32–38

    Article  CAS  PubMed  Google Scholar 

  10. Heery DM et al (1997) A signature motif in transcriptional co-activatorsmediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  11. Buchanan G et al (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7:1273–1281

    CAS  PubMed  Google Scholar 

  12. Taplin ME et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    Article  CAS  PubMed  Google Scholar 

  13. Taplin ME et al (2003) Androgen receptor mutations in androgen-independent prostate cancer: cancer and Leukemia Group B Study 9663. J Clin Oncol 21:2673–2678

    Article  CAS  PubMed  Google Scholar 

  14. Takayama K et al (2013) Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 32:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    Article  CAS  PubMed  Google Scholar 

  16. Chen CD et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  CAS  Google Scholar 

  17. Locke JA et al (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68:6407–6415

    Article  CAS  PubMed  Google Scholar 

  18. Sun S et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120:2715–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waltering KK et al (2009) Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69:8141–8149

    Article  CAS  PubMed  Google Scholar 

  20. Antonarakis ES et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Antonarakis ES et al (2016) Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis 19:231–241

    Article  CAS  PubMed  Google Scholar 

  22. Takayama K, Inoue S (2013) Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 20(8):756–768

    Article  CAS  PubMed  Google Scholar 

  23. Takayama K et al (2007) Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 26:4453–4463

    Article  CAS  PubMed  Google Scholar 

  24. Takayama K et al (2009) Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 69:137–142

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu J et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Urbanucci A et al (2012) Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene 31:2153–2163

    Article  CAS  PubMed  Google Scholar 

  28. Tan PY et al (2012) Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 32:399–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He B et al (2014) GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc Natl Acad Sci U S A 111(51):18261–18266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Obinata D et al (2016) Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth. Oncogene. 35(49):6350–6358

    Article  CAS  PubMed  Google Scholar 

  31. Takayama K et al (2015a) RUNX1, an androgen- and EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer. Oncotarget 6:2263–2276

    Article  PubMed  Google Scholar 

  32. Takayama K et al (2015b) TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun 6:8219

    Article  CAS  PubMed  Google Scholar 

  33. Shiraki T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takayama K et al (2011) Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 30(5):619–630

    Article  CAS  PubMed  Google Scholar 

  35. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mercer TR, Mattick JS et al (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  38. Misawa A et al (2016) Androgen-induced lncRNA SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. J Biol Chem 291(34):17861–17880

    Article  CAS  PubMed  Google Scholar 

  39. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  CAS  PubMed  Google Scholar 

  40. Gius D et al (2005) The epigenome as a molecular marker and target. Cancer 104:1789–1793

    Article  CAS  PubMed  Google Scholar 

  41. Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimberly PK, Vezina CM (2015) DNA methylation as a dynamic regulator or development and disease process: spotlight on the prostate. Epigenomics 7:413–425

    Article  CAS  Google Scholar 

  43. Yu M et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stroud H et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bertoli G et al (2016) MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer. Int J Mol Sci 17:421

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takayama K, Inoue S (2016) The emerging role of noncoding RNA in prostate cancer progression and its implication on diagnosis and treatment. Brief Funct Genomics 15:257–265

    Article  PubMed  Google Scholar 

  47. Xiao J et al (2012) miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 72(14):1514–1522

    Article  CAS  PubMed  Google Scholar 

  48. Murata T et al (2010) miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13:356–361

    Article  CAS  PubMed  Google Scholar 

  49. Shi XB et al (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104:19983–19988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun D et al (2011) miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 71(4):1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li T et al (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    Article  CAS  PubMed  Google Scholar 

  52. Liu LZ et al (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One 6:e19139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu Z et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379

    Article  CAS  PubMed  Google Scholar 

  54. Sun T et al (2014) MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 33(21):2790–2800

    Article  CAS  PubMed  Google Scholar 

  55. Jalava SE et al (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31:4460–4471

    Article  CAS  PubMed  Google Scholar 

  56. Coppola V et al (2013) BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 32:1843–1853

    Article  CAS  PubMed  Google Scholar 

  57. Ribas J et al (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69:7165–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ambs S et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang H et al (2014) Diverse roles of miR-29 in cancer. Oncol Rep 31(4):1509–1516

    CAS  PubMed  Google Scholar 

  60. Wang Y et al (2013) The role of miRNA-29 family in cancer. Eur J Cell Biol 92(3):123–128

    Article  CAS  PubMed  Google Scholar 

  61. Gebeshuber CA et al (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10(4):400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang C et al (2011a) miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem 352(1–2):197–207

    Article  CAS  PubMed  Google Scholar 

  63. Wang D et al (2011b) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kong G et al (2011) Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS One 6(5):e19518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Langsch S et al (2016) miR-29b mediates NF-κB signaling in KRAS-induced non-small cell lung cancers. Cancer Res. 76(14):4160–4169

    Article  CAS  PubMed  Google Scholar 

  66. Nickerson ML et al (2013) Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Hum Mutat 34(9):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koboldt DC et al (2016) Rare variation in TET2 is associated with clinically relevant prostate carcinoma in African-Americans. Cancer Epidemiol Biomarkers Prev 25(11):1456–1463

    Article  PubMed  Google Scholar 

  68. Chi P et al (2010) Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dasgupta S et al (2014) Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65:279–292

    Article  CAS  PubMed  Google Scholar 

  70. Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339:240–249

    Article  CAS  PubMed  Google Scholar 

  71. Metzger E et al (2008) Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10:53–60

    Article  CAS  PubMed  Google Scholar 

  72. Metzger E et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464(7289):792–796

    Article  CAS  PubMed  Google Scholar 

  73. Kim JY et al (2014) A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer. Mol Cell 54(4):613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malik R et al (2015) Targeting the MLL complex in castration-resistant prostate cancer. Nat Med 21(4):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cai C et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kan Z et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    Article  CAS  PubMed  Google Scholar 

  78. Moran VA et al (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Du Z et al (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20:908–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh CL et al (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A 111(20):7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puc J et al (2015) Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160(3):367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Srikantan V et al (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 97:12216–12221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Petrovics G et al (2004) Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23:605–611

    Article  CAS  PubMed  Google Scholar 

  84. Yang L et al (2013) lncRNA-dependent mechanisms of androgen-receptor regulated gene activation programs. Nature 500:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Prensner JR et al (2014) The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 5(6):1434–1438

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lanz RB et al (1999) steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  87. Lanz RB et al (2002) Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci U S A 99(25):16081–16086. Epub 2002 Nov 20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang A et al (2015) LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep 13(1):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhan A et al (2013) Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol 425(19):3707–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xue X et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35:2746–2755

    Article  CAS  PubMed  Google Scholar 

  92. Farooqi AA, Bhatti S, Ismail M (2012) TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  94. Ogawa Y et al (2008) Intersect, ion of the RNA interference and X-inactivation pathways. Science 320:1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rosok O, Sioud M (2004) Systematic identification of sense-antisense transcripts in mammalian cells. Nat Biotechnol 22:104–108

    Article  CAS  PubMed  Google Scholar 

  96. Yu W et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hessels D, Schalken JA (2009) The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 6:255–261

    Article  CAS  PubMed  Google Scholar 

  98. Bussemakers MJ et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    CAS  PubMed  Google Scholar 

  99. Salameh A et al (2015) PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 112(27):8403–8408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai MC et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi Y et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738

    Article  CAS  PubMed  Google Scholar 

  103. Shav-Tal Y, Zipori D (2002) PSF and p54(nrb)/NonO--multi-functional nuclear proteins. FEBS Lett 531:109–114

    Article  CAS  PubMed  Google Scholar 

  104. Song X et al (2004) Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis. Proc Natl Acad Sci U S A 101:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Takayama, Ki., Inoue, S. (2017). Investigation of Androgen Receptor Signaling Pathways with Epigenetic Machinery in Prostate Cancer. In: Farooqi, A., Ismail, M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_10

Download citation

Publish with us

Policies and ethics