Advertisement

Ectomycorrhizal Mushrooms: Their Diversity, Ecology and Practical Applications

  • Rohit SharmaEmail author
Chapter

Abstract

Ectomycorrhizal symbiosis is formed by a large number of plants and fungi. It is an association of fungal mycelia and roots of plants, mostly woody trees. Ectomycorrhiza are formed by fungi like Russula, Lactarius, Boletus, Cantharellus, etc. which are mostly common edible mushrooms. The trees which form ectomycorrhiza are Shorea, Pinus, etc. Ectomycorrhiza has been proved in at least 162 genera and more than 5400 species. Previous studies were based on morphology of ectomycorrhiza, but molecular data were lacking. However, relatively recently molecular studies and identification have confirmed ectomycorrhiza association of various fungi. These are formed by mostly members of Basidiomycota and Ascomycota. The orders like Agaricales, Boletales, Pezizales, Helotiales, and Cantharellales include the largest number of ectomycorrhizal lineages. In tropical regions, trees belonging to Dipterocarpaceae and Caesalpiniaceae form most ectomycorrhiza. There are attempts to study ectomycorrhiza in India but are way behind the studies that are been conducted around the world. Some of the studies conducted in India are related to ectomycorrhizal mushroom diversity and synthesis but none on genomics, ecological, and physiological studies. This chapter discusses from the basics what are ectomycorrhiza and their ecology and also applied aspects of ectomycorrhiza.

Keywords

Mycorrhizal Fungus Arbuscular Mycorrhizae Fungal Symbiont Extraradical Mycelium Extraradical Hypha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agerer R (1987, 2002) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwabisch Gmiid, GermanyGoogle Scholar
  2. Agerer R (2001) Exploration types of ectomycorrhizas: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  3. Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406PubMedCrossRefGoogle Scholar
  4. Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis R. Br. (Nyctaginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90:511–517CrossRefGoogle Scholar
  5. Bagley SJ, Orlovich DA (2004) Genet size and distribution of Amanita muscaria in a suburban park, Dunedin, New Zealand. N Z J Bot 42:939–947CrossRefGoogle Scholar
  6. Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523PubMedCrossRefGoogle Scholar
  7. Bergemann SE, Douhan GW, Garbaletto M, Miller SL (2006) No evidence of population structure across three isolated subpopulations of Russula brevipes in an oak/pine woodland. New Phytol 170:177–184PubMedCrossRefGoogle Scholar
  8. Bever JD, Pringle A, Bchults PA (2002) Dynamics with in the plant-arbuscular mycorrhizal fungal mutualism: testing the Nahire of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 267–294Google Scholar
  9. Bhagwat SA, Brown ND, Watkinson SC, Savill PS, Jennings SB (2000) Macrofungal diversity in three forested land use types, a case study from the Western Ghats of India. In: Tropical mycology. Liverpool John Moores University, Liverpool, pp 25–29Google Scholar
  10. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  11. Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula × Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107PubMedCrossRefGoogle Scholar
  12. Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475PubMedCrossRefGoogle Scholar
  13. Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi—key genera in profile. Springer, Berlin, Heidelberg, p 369CrossRefGoogle Scholar
  14. Chevaliar G, Grente J (1973) Propagation de la mycorrhization par la truffle a partir de racines excisees et de plantules inseminatrices. Ann Phytopathol 4:317–318Google Scholar
  15. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20CrossRefGoogle Scholar
  16. Comandini O, Contu M, Rinaldi AC (2006) An overview of Citrus ectomycorrhizal fungi. Mycorrhiza 16:381–395PubMedCrossRefGoogle Scholar
  17. Cumming JR, Zawaski C, Desai S, Collart FR (2015) Phosphorus disequilibrium in the tripartite plant ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr 15:464–485Google Scholar
  18. Dahlberg A (2001) Effects of fire on ectomycorrhizal fungi in Fennos Canadian boreal forests. Silva Fennica 36:69–80Google Scholar
  19. Danell E (1994) Formation and growth of the ectomycorrhiza of Cantharellus cibarius. Mycorrhiza 5:88–97CrossRefGoogle Scholar
  20. Danell E (2002) Current research on chanterelle cultivation in Sweden. In: Hall I, Wang Y, Danell E, Zambonelii A (eds) Edible mycorrhizal mushrooms and their cultivation. Crop and Food Research, Christ Church, pp 1–4Google Scholar
  21. Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 207–230CrossRefGoogle Scholar
  22. Dunham SM, Kretzer A, Pfrender ME (2003) Characterization of Pacific golden chanterelle (Cantharellus formosus) genet size using co-dominant microsatellite markers. Mol Ecol 12:1607–1618PubMedCrossRefGoogle Scholar
  23. Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal fungal communities in relation to the abiotic-environment. In: van der Heijden MGA, Sanders JR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, p 465Google Scholar
  24. Finlay RD (2004) Mycorrhizal fungi and their multifunctional role. Mycologist 18:91–96CrossRefGoogle Scholar
  25. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126PubMedCrossRefGoogle Scholar
  26. Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants-I, translocation of 14C-labeled carbon between plants interconnected by a common mycelium. New Phytol 120:105–115CrossRefGoogle Scholar
  27. Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants-II, the uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165CrossRefGoogle Scholar
  28. Frank AB (1885) Uber die auf wurzelsbiose beruhends eranhrung gewisser baume durch unterirdische pilze. Ber Deut Bot Ges 3:128–145Google Scholar
  29. Giachini AJ, Oliviera VI, Castellano MA, Trappe JM (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92:1166–1177CrossRefGoogle Scholar
  30. Gobert A, Plassard C (2008) The beneficial effect of mycorrhizae on N utilization by the host plant: myth or reality? In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, Heidelberg, p 797Google Scholar
  31. Godbold DL, Hoosbeek MR, Lukac M et al (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24CrossRefGoogle Scholar
  32. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, ChichesterGoogle Scholar
  33. Hacskaylo E (1953) Pure culture synthesis of prime mycorrhizae in terralite. Mycologia 45:971–975Google Scholar
  34. Harnett DC, Wilson WT (1999) Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology 80:1187–1195CrossRefGoogle Scholar
  35. Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heilderberg, p 465Google Scholar
  36. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with below ground allocation in culture studies. Ecology 87:563–569PubMedCrossRefGoogle Scholar
  37. Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795CrossRefGoogle Scholar
  38. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  39. Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, p 465Google Scholar
  40. Jonsson LM, Nilsson M-C, Wardle DA, Zachrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364CrossRefGoogle Scholar
  41. Kaul TN (2002) In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Conservation of mycodiversity in India: an appraisal. CABI Publishing, New York, p 191Google Scholar
  42. Kaushal SC (1991) Systematics of NW Himalayan species of Helvella (operculate discomycete). In: Khoshoo TN, Sharma M (eds) Himalayan botanical researches. Ashish Publishing House, New Delhi, pp 61–75Google Scholar
  43. Kennedy P, Walker JKM, Bogar L (2015) Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus. In: Horton TR (ed) Mycorrhizal networks, Ecological studies 224, Chapter 8. Springer, p 227Google Scholar
  44. Khoshoo TN (1991) Conservation of biodiversity in biosphere. In: Khoshoo TN, Sharma M (eds) Indian geosphere biosphere programme: some aspects. Har-Anand Publications, Vikas Publishing House Private, New Delhi, pp 183–233Google Scholar
  45. Khoshoo TN (1996) Biodiversity in the Indian Himalayas: conservation and utilization. In: Banking on biodiversity—report on the regional consultation on biodiversity assessment in the Hindukush HimalayasGoogle Scholar
  46. Kjøller R, Clemmensen KE (2008) The impact of liming on ectomycorrhizal fungal communities in coniferous forests in Southern Sweden. Skogsstyrelsen februari Publications, JönköpingGoogle Scholar
  47. Kretzer AM, Dunham S, Molina R, Spatafora JW (2004) Microsatellite markers reveal the below ground distribution of genets of two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol 161:313–320CrossRefGoogle Scholar
  48. Lakhanpal TN (1993) The Himalayan agaricales status of systematics. Mush Res 2:1–10Google Scholar
  49. Lakhanpal TN (1996) Mushrooms of India: Boletaceae. In: Mukerji KG (ed) Studies in cryptogamic botany, vol I. APH Publishing Corporation, DelhiGoogle Scholar
  50. Lakhanpal TN (2000) Ectomycorrhiza—an overview. In: Mukerji (ed) Mycorrhizal biology. Kluwer Academic Plenum Publishers, New York, pp 101–118CrossRefGoogle Scholar
  51. Lewis DH (1973) Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48:261–273CrossRefGoogle Scholar
  52. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  53. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515PubMedCrossRefGoogle Scholar
  54. Martin F, Aerts A, Ahrén D (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  55. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773PubMedCrossRefGoogle Scholar
  56. Marx DH (1980) Ectomycorrhiza fungus inoculations, a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, Oxford, pp 13–71Google Scholar
  57. Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:245–254CrossRefGoogle Scholar
  58. Marx DH, Zak B (1965) Effect of pH on mycorrhizal formation of slash pine in aseptic culture. For Sci 11:66–75Google Scholar
  59. Melin E (1922) Untersuchungen iiber die Larix Mycorrhiza I. Synthese der Mykorrhiza in Rein culture. Sven Bot Tidskr 16:161–196Google Scholar
  60. Melin E (1923) Experimentelle Unters uchungen uber die Okologie der Mykorrhizen von Pinus sylvestris and Pinus abies. Mycol Unters 2:72–331Google Scholar
  61. Melin E (1936) Metroden der experimentelle untersuchung mylcotropher pflanzen. Handb Biol Arbeitsmety 11:1015–1108Google Scholar
  62. Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. APS, Saint Paul, pp 115–119Google Scholar
  63. Moser M (1958) Die Kiinstliche Mycorrhizaimp fung an Forstpflanzen. I. Erfahrungen bei der Reinkulture von Mycorrhizapilzen. For Wiss Centralbl 77:32–40CrossRefGoogle Scholar
  64. Murata H, Ohta A, Yamada A, Narimatsu M, Futamura N (2005) Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:505–512PubMedCrossRefGoogle Scholar
  65. Natarajan K, Ravindran C (2003a) Two new species of the genus Entoloma from south India. Mycotaxon 85:143–146Google Scholar
  66. Natarajan K, Ravindran C (2003b) Two new species of the genus Pholiota from south India. Mycotaxon 85:271–275Google Scholar
  67. Natarajan K, Narayanan K, Ravindran C, Kumaresan V (2005a) Biodiversity of agarics from Nilgiri Biosphere Reserve, Western Ghats, India. Curr Sci 88:1890–1893Google Scholar
  68. Natarajan K, Senthilarasu G, Kumaresan V, Riviere T (2005b) Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr Sci 88:1893–1895Google Scholar
  69. Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108PubMedCrossRefGoogle Scholar
  70. Onguene NA, Kuyper TW (2001) Mycorrhizal associations in the rain forest of South Cameroon. For Ecol Manage 140:277–287CrossRefGoogle Scholar
  71. Pachlewski R, Pachlewski J (1974) Studies on symbiotic properties of mycorrhizal fungi of Pine (Pinus silvertris L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. For Res Inst, Warsaw, Poland, p 228Google Scholar
  72. Pande V, Palni UT, Singh SP (2004) Species diversity of ectomycorrhizal fungi associated with temperate forest of Western Himalaya: a preliminary assessment. Curr Sci 86:1619–1623Google Scholar
  73. Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbioses with orchid protocorms. Symbiosis 25:29–55Google Scholar
  74. Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CABI Publishing, CAB International, Wallingford, OxonGoogle Scholar
  75. Peterson RL, Wagg C, Pautier M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456CrossRefGoogle Scholar
  76. Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann For Sci 68:25–32CrossRefGoogle Scholar
  77. Purkayastha RP, Chandra A (1976) Indian edible mushrooms. Firma KLM Pvt. Ltd., CalcuttaGoogle Scholar
  78. Purkayastha RP, Chandra A (1985) Manual of Indian edible mushrooms. Today and Tomorrow’s Printers and Publishers, New DelhiGoogle Scholar
  79. Rattan SS, Khurana IPS (1978) The clavariaceae of the Sikkim Himalayas. Bibliotheca Mycologia, vol 66. Cramer in der A.R. Gantner Verlag Kommanditgesellschaft FL-9490 Vadauz. Liechtenstein 66:1–68Google Scholar
  80. Read DJ (1991a) Mycorrhizas in ecosystems. Experimentia 47:376–391CrossRefGoogle Scholar
  81. Read DJ (1991b) Mycorrhizal in ecosystems natures’ response to the “Law of the minimum”. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 101–130Google Scholar
  82. Reddy MS, Singla S, Natarajan K, Senthilrasu G (2005) Pisolithus indicus, a new species of ectomycorrhizal fungus associated with Dipetrocarps in India. Mycologia 97:838–843PubMedCrossRefGoogle Scholar
  83. Redecker D, Szaro TM, Bowman RJ, Bruns TD (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034PubMedCrossRefGoogle Scholar
  84. Redeker KR, Treseder KK, Allen MF (2004) Ectomycorrhizal fungi: a new source of atmospheric methyl halides. Glob Chang Biol 10:1009–1016CrossRefGoogle Scholar
  85. Rillig MC, Wright SF, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  86. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  87. Sagar A, Lakhanpal TN (2005) Pure culture synthesis of Pinus wallichiana ectomycorrhizal with Suillus sibiricus. Indian Phytopathol 58:323–325Google Scholar
  88. Saini SS, Atri NS (1993) Studies on genus Lactarius from India. Indian Phytopathol 46:360–364Google Scholar
  89. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, HeidelbergGoogle Scholar
  90. Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  91. Sharda RM (1991) Clavaroid homobasidiomycetes in the Himalaya, a check list. In: Khullar SP, Sharma MP (eds) Himalayan botanical researches. Ashish publishing House, New Delhi, pp 31–60Google Scholar
  92. Sharma R (2008) Studies on ectomycorrhizal mushrooms of M.P. and Chhattisgarh. PhD thesis, R.D. University, Jabalpur, IndiaGoogle Scholar
  93. Sharma R, Rajak RC (2011). Ectomycorrhizal Interaction between Cantharellus and Dendrocalamus. In: Rai M, Varma V (eds) Diversity and biotechnology of ectomycorrhizae. Soil Biol 25. Springer, Berlin, Heidelberg, pp 405–428Google Scholar
  94. Sharma PM, Sidhu D (1991) Notes on Himalayan Geoglossaceae. In: Khullar SP, Sharma MP (eds) Himalayan botanical researches. Ashish Publishing House, New Delhi, pp 13–29Google Scholar
  95. Sharma R, Rajak RC, Pandey AK (2008a) Some ectomycorrhizal mushrooms of Central India—I. Russula. J Mycopathol Res 46:201–212Google Scholar
  96. Sharma R, Rajak RC, Pandey AK (2008b) Growth response of Dendrocalamus seedlings by inoculation with ectomycorrhizal fungi. Middle East J Sci Res 3:200–206Google Scholar
  97. Sharma R, Rajak RC, Pandey AK (2009a) Some ectomycorrhizal mushrooms of Central India—II. Lactarius. J Mycopathol Res 47:43–47Google Scholar
  98. Sharma R, Rajak RC, Pandey AK (2009b) Simple technique for ectomycorrhizal formation between Cantharellus and Dendrocalamus strictus. Taiwan J For Sci 24:141–148Google Scholar
  99. Sharma R, Rajak RC, Pandey AK (2009c) Ectomycorrhizal mushrooms in Indian tropical forests. Biodiversity 10:25–30CrossRefGoogle Scholar
  100. Sharma R, Rajak RC, Pandey AK (2010a) Mass multiplication of ectomycorrhizal Cantharellus inoculum for large scale tailoring nursery inoculations of bamboo seedlings. Asian J Sci Res 4:84–89Google Scholar
  101. Sharma R, Rajak RC, Pandey AK (2010b) Some ectomycorrhizal mushrooms of Central India-V. Pisolithus, Scleroderma, Geastrum, Cantharellus. J Mycopathol Res 48:337–342Google Scholar
  102. Sharma R, Rajak RC, Pandey AK (2010c) Evidence of antagonistic interactions between rhizosphere and mycorrhizal fungi associated with Dendrocalamus strictus (Bamboo). J Yeast Fungal Res 1:112–117Google Scholar
  103. Sharma R, Rajak RC, Pandey AK (2010d) Some ectomycorrhizal mushrooms of Central India–III. Amanita. J Mycopathol Res 48:81–84Google Scholar
  104. Sharma R, Rajak RC, Pandey AK (2010e) Some ectomycorrhizal mushrooms of Central India-IV. Boletus, Leccinum. J Mycopathol Res 48:329–335Google Scholar
  105. Sim M-Y, Eom A-H (2006) Effects of ectomycorrhizal fungi on growth of seedlings of Pinus densiflora. Mycobiology 34:191–195PubMedPubMedCentralCrossRefGoogle Scholar
  106. Simard SW, Durall D, Jones M (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, HeidelbergGoogle Scholar
  107. Skinner MF, Bowen GD (1974a) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6:53–56CrossRefGoogle Scholar
  108. Skinner MF, Bowen GD (1974b) The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol Biochem 6:57–61CrossRefGoogle Scholar
  109. Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148:4–6CrossRefGoogle Scholar
  110. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, LondonGoogle Scholar
  111. Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113CrossRefGoogle Scholar
  112. Smith FA, Timonen S, Smith SE (2000) In: Blom WPM, Visser EJW (eds) Mycorrhizas. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  113. Sterkenburg E (2016) Drivers of soil fungal communities in boreal forests–feedbacks on soil fertility and decomposition. Doctoral Thesis, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  114. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263PubMedCrossRefGoogle Scholar
  115. Tedersoo L, Liiv I, Kivistik PA, Anslan S, Kõljalg U, Bahram M (2016) Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens. MycoKeys 13:1–20CrossRefGoogle Scholar
  116. Thomas KA, Peintner U, Moser MM, Manimohan P (2002) Anamika, a new mycorrhizal genus of Cortinariaceae from India and its phylogenetic position based on ITS and LSU sequences. Mycol Res 106:245–251CrossRefGoogle Scholar
  117. van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heifden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, HeilderbergGoogle Scholar
  118. van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, BerlinGoogle Scholar
  119. Verbeken A, Buyck B (2001) Diversity and ecology of tropical ectomycorrhizal fungi of Africa. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Tropical mycology, vol I. CABI Publishing, UK, pp 11–24Google Scholar
  120. Verma RN, Singh GB, Mukta S (1995) Mushroom flora of north-eastern hills. In: Advances in horticulture-13, mushroom. Malhotra Publishing House, New Delhi, pp 329–349Google Scholar
  121. Voke NR (2012) The effect of roots and ectomycorrhizal fungi on carbon cycling in forest soils. The University of York, YorkGoogle Scholar
  122. Walker JKM, Cohen H, Higgins LM, Kennedy PG (2014) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202:287–296PubMedCrossRefGoogle Scholar
  123. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  124. Watling R, Lee SS (1995) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in Peninsular Malaysia. J Trop For Sci 7:657–669Google Scholar
  125. Wiemken V (2007) Trehalose synthesis in ectomycorrhizas—a driving force of carbon gain for fungi. New Phytol 174:228–230PubMedCrossRefGoogle Scholar
  126. Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293PubMedCrossRefGoogle Scholar
  127. Zhou Z, Miwa M, Hogetsu T (2000) Genet distribution of ectomycorrhizal fungus Suillus grevillei populations in two Larix kaempferi stands over two years. J Plant Res 113:365–374CrossRefGoogle Scholar
  128. Zhou Z, Miwa M, Hogetsu T (2001) Polymorphism of simple sequence repeats reveals gene flow within and between ectomycorrhizal Suillus grevillei populations. New Phytol 149:339–348CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Microbial Culture Collection (MCC), National Centre for Cell ScienceNCCS Complex, S.P. Pune UniversityPuneIndia

Personalised recommendations