Mycorrhizal Helper Bacteria: Sustainable Approach

  • Devendra K. ChoudharyEmail author
  • Ajit Varma
  • Narendra Tuteja


Microorganisms in rhizosphere play an important role in soil processes that determine plant and soil productivity. Tremendous efforts have been made to explore mycorrhizal diversity along with benign role of bacterial population in soil habitats to understand the successful functioning of extraneous microbial bio-inoculants (AMF/PGPR) and their influence on soil health. Improvement in agricultural sustainability requires optimal use and management of soil fertility and soil physical property and relies on soil biological processes and soil biodiversity. Plants play an important role in selecting and enriching the type of microbes by the constituents of their root exudates. The mycorrhizal and bacterial community develops in the rhizosphere which is a result of diverse nature and concentration of organic constituents of exudates and the corresponding ability of them to utilize these as sources of energy. Therefore, rhizosphere microbial community has an efficient system for uptake and catabolism of organic compounds present in root exudates and further transportation in plants mediated through mycorrhizal helper bacteria.


Bacterial Community Mycorrhizal Fungus Indole Acetic Acid Indole Acetic Acid Production Soil Biodiversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Ajit Varma is thankful to Department of Science and Technology and Department of Biotechnology for partial financial funding and to DST-FIST for providing confocal microscope facility.


  1. Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389CrossRefGoogle Scholar
  2. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35CrossRefPubMedGoogle Scholar
  3. Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246CrossRefPubMedGoogle Scholar
  4. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371CrossRefPubMedGoogle Scholar
  5. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant-Microbe Interact 14:255–260CrossRefPubMedGoogle Scholar
  6. Bomberg M, Timonen S (2007) Distribution of Cren- and Euryarchaeota in scots pine mycorrhizospheres and boreal forest humus. Microb Ecol 54:406–416CrossRefPubMedGoogle Scholar
  7. Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) Mycota. IX Fungal Associations. Springer, Berlin, pp 45–91CrossRefGoogle Scholar
  8. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498CrossRefPubMedGoogle Scholar
  9. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230CrossRefPubMedGoogle Scholar
  10. Cerigini E, Palma F, Barbieri E, Buffalini M, Stocchi V (2008) The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species. FEMS Microbiol Lett 284:197–203CrossRefPubMedGoogle Scholar
  11. Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul 35:276–300CrossRefGoogle Scholar
  12. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2008) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738CrossRefGoogle Scholar
  13. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478CrossRefPubMedGoogle Scholar
  14. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811CrossRefGoogle Scholar
  15. Deveau A, Palin B, Delaruelle C, Peter M, Kohler A (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238 N. New Phytol 175:743–755CrossRefPubMedGoogle Scholar
  16. Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009) Metal induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162CrossRefGoogle Scholar
  17. Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir–Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann Sci For 48:239–251CrossRefGoogle Scholar
  18. Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369:115–129CrossRefGoogle Scholar
  19. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36CrossRefPubMedGoogle Scholar
  20. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192CrossRefPubMedGoogle Scholar
  21. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467CrossRefPubMedGoogle Scholar
  22. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  23. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499CrossRefPubMedPubMedCentralGoogle Scholar
  24. Glick BR (2015) Stress control and ACC aeaminase. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 257–264Google Scholar
  25. Guether M, Balestrini R, Hannah M, He J, Udvardi M, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212CrossRefPubMedGoogle Scholar
  26. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42CrossRefPubMedGoogle Scholar
  27. Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629CrossRefPubMedGoogle Scholar
  28. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267CrossRefPubMedGoogle Scholar
  30. Javot H, Varma Penmetsa R, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbial Ecol 48:1–13CrossRefGoogle Scholar
  32. Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora ML (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034CrossRefGoogle Scholar
  33. Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S (2007) Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. FEMS Microbiol Ecol 62:32–44CrossRefPubMedGoogle Scholar
  34. Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology 6:449–456CrossRefGoogle Scholar
  35. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954CrossRefPubMedGoogle Scholar
  37. Meyer JB, Frapolli M, Keel C, Maurhofer M (2011) Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl Environ Microbiol 77:7345–7354CrossRefPubMedPubMedCentralGoogle Scholar
  38. Naik PR, Sahoo N, Goswami D, Ayyaduraj N, Sakthivel N (2008) Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microb Ecol 56:492–504CrossRefPubMedGoogle Scholar
  39. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nazir R, Warmink JA, Boersma H, Van Elsas JD (2009) Mechanisms that promote bacterial fitness in fungal affected soil microhabitats. FEMS Microbiol Ecol 71:161–185Google Scholar
  41. Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant-Microbe Interact 11:167–176CrossRefPubMedGoogle Scholar
  42. Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035CrossRefGoogle Scholar
  43. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797CrossRefPubMedGoogle Scholar
  44. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546CrossRefPubMedGoogle Scholar
  45. Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438. doi: 10.1371/journal.pone.0154438 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54CrossRefGoogle Scholar
  47. Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061CrossRefPubMedGoogle Scholar
  48. Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  49. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854CrossRefPubMedGoogle Scholar
  51. Scheublin TR, Sanders IR, Keel C, Van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763CrossRefPubMedGoogle Scholar
  52. Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19CrossRefPubMedGoogle Scholar
  53. Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85CrossRefPubMedGoogle Scholar
  54. Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936CrossRefPubMedGoogle Scholar
  55. Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70CrossRefPubMedGoogle Scholar
  56. Singh BK, Nunan N, Ridgway KP, McNicol J, Young JP (2008) Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environ Microbiol 10:534–541CrossRefPubMedGoogle Scholar
  57. Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384CrossRefPubMedGoogle Scholar
  58. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  59. Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424CrossRefPubMedGoogle Scholar
  60. Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383CrossRefPubMedGoogle Scholar
  61. Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi KI, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot 64:1049–1059CrossRefPubMedPubMedCentralGoogle Scholar
  62. Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738CrossRefPubMedGoogle Scholar
  63. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40CrossRefPubMedGoogle Scholar
  64. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelia exudates on soil bacterial growth and community structure. FEMS Microbial Ecol 61:295–304CrossRefGoogle Scholar
  65. van Elsas JD, Duarte GF, Rosado AS, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 32:133–154CrossRefGoogle Scholar
  66. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R (2003a) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256CrossRefPubMedGoogle Scholar
  67. Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003b) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pretense L. under lead toxicity. Can J Microbiol 49:577–588CrossRefPubMedGoogle Scholar
  68. Vivas A, Barea JM, Biró B, Azcón R (2006) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598CrossRefPubMedGoogle Scholar
  69. Yang J, Xie X, Wang X, Dixon R, Wang YP (2014) Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proc Natl Acad Sci USA 111:3718–3725CrossRefGoogle Scholar
  70. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. doi: 10.1111/nph.13838
  71. Zhao Y, Bian SM, Zhou HN, Huang JF (2006) Diversity of nitrogenase systems in diazotrophs. J Integr Plant Biol 48:745–755CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Devendra K. Choudhary
    • 1
    Email author
  • Ajit Varma
    • 1
  • Narendra Tuteja
    • 1
  1. 1.Amity Institute of Microbial Technology (AIMT)Amity University Uttar PradeshNoida, Gautam Buddha NagarIndia

Personalised recommendations