Mycorrhiza: Creating Good Spaces for Interactions

  • Geetanjali ManchandaEmail author
  • Raghvendra Pratap Singh
  • Zhi Feng Li
  • Jun Jie Zhang


Soil is a complicate environment, where complex systems of multiple interactions between the organisms take place. Plant health is majorly determined by these vital interactions in the soil. The ubiquitous arbuscular mycorrhizal (AM) fungi and a number of microbes interact synergistically to enhance the fitness of each other as well as plants they are associated with. Both the interacting partners are cross facilitators, where AM fungi provide suitable specialized ecological niches as well as nutrients for bacteria, and in turn bacteria improves the mycorrhization, provides pool of available P and N, and helps in management of biotic and abiotic stresses. Given the importance of AM and the interacting microbes in low-input sustainable agriculture, it is important to understand their interactions.


Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhiza Mycorrhizal Fungus Spore Germination Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389CrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  3. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  4. Andrade G, Linderman RG, Bethlenfalvay GJ (1998) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87CrossRefGoogle Scholar
  5. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  6. Azaizeh H, Marschner H, Romheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil grown maize plants. Mycorrhiza 5:321–327CrossRefGoogle Scholar
  7. Baath E, Nilsson L, Goransson H, Wallander H (2004) Can theextent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil. Soil Biol Biochem 36:2105–2109CrossRefGoogle Scholar
  8. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  9. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bago B, Azcón-Aguillar C (1997) Changes in the rhizosphere pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.) Zt Pflanzenern Bodenkde 160:333–339CrossRefGoogle Scholar
  11. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  12. Bansal M, Mukerji K (1994) Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44CrossRefGoogle Scholar
  13. Barea J (2000) Rhizosphere and mycorrhiza of field crops. In: Balázs E, Galante E, Lynch J, Schepers J, Toutant J, Werner D, Werry P (eds) Biological resource management: connecting science and policy. Springer/INRA Editions, Berlin/New York, pp 110–125Google Scholar
  14. Barea JM, Rosario A, Aguilar CA (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  15. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  16. Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322PubMedCrossRefGoogle Scholar
  17. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371PubMedCrossRefGoogle Scholar
  18. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  19. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001a) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant-Microbe Interact 14:255–260PubMedCrossRefGoogle Scholar
  21. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001b) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49PubMedCrossRefGoogle Scholar
  22. Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus glomeribacter gigasporarum’ gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124PubMedCrossRefGoogle Scholar
  23. Bianciotto V, Genre A, Jargeat P, Lumini E, Becard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70:3600–3608PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  25. Bonfante P, Balestrini A (1994) Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128:93–101CrossRefGoogle Scholar
  26. Bonfante-Fasolo P, Schubert A (1987) Spore wall architecture of Glomus spp. Can J Bot 65:539–546CrossRefGoogle Scholar
  27. Boyetchko S, Tewari J (1996) Use of VA mycorrhizal fungi in soil-borne disease management. In: Utkhede R, Gupta V (eds) Management of soil borne diseases. Kalyani Publishers, New Delhi, pp 146–163Google Scholar
  28. Broek A, Vanderleyden J (1995) The role of bacterial motility, chemotaxis and attachment in bacteria–plant interaction. Mol Plant-Microbe Interact 8:800–810CrossRefGoogle Scholar
  29. Browne P, Rice O, Miller S, Burke J, Dowling D, Morrissey J (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138CrossRefGoogle Scholar
  30. Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  31. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  32. Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microbe Interact 13:693–698PubMedCrossRefGoogle Scholar
  33. Burmolle M, Hansen LH, Sorensen SJ (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54:352–362PubMedCrossRefGoogle Scholar
  34. Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614PubMedCrossRefGoogle Scholar
  35. Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193PubMedCrossRefGoogle Scholar
  36. Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475PubMedCrossRefGoogle Scholar
  37. Carpenter-Boggs L, Loynachan T, Stahl P (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated Actinomycetes. Soil Biol Biochem 27:1445–1451CrossRefGoogle Scholar
  38. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087PubMedCrossRefGoogle Scholar
  40. Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.) Biol Fertil Soils 15:253–258CrossRefGoogle Scholar
  41. Citernesi AS, Filippi C, Bagnoli G, Giovannetti M (1994) Effects of the antimycotic molecule Iturin A2, secreted by Bacillus subtilis strain M51, on arbuscular mycorrhizal fungi. Microbiol Res 149:241–246PubMedCrossRefGoogle Scholar
  42. Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600PubMedPubMedCentralCrossRefGoogle Scholar
  43. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  44. Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1:52–57PubMedCrossRefGoogle Scholar
  45. Curl E, Truelove B (1986) The rhizosphere. Advanced series in agricultural sciences. Springer, Berlin, vol 15Google Scholar
  46. Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083PubMedCrossRefGoogle Scholar
  47. Desiro A, Naumann M, Epis S, Novero M, Bandi C, Genre A, Bonfante P (2013) Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ Microbiol 15:822–836PubMedCrossRefGoogle Scholar
  48. Desiro A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S, Faccio A, Kaech A, Pawlowska TE, Bonfante P (2014) Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 8:257–270PubMedCrossRefGoogle Scholar
  49. Desiro A, Faccio A, Kaech A, Bidartondo MI, Bonfante P (2015) Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria. New Phytol 205:1464–1472PubMedCrossRefGoogle Scholar
  50. Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148–2152CrossRefGoogle Scholar
  51. Duponnois R, Kisa M, Prin Y, Ducousso M, Plenchette C, Lepage M, Galiana A (2008) Soil factors influencing the growth response of Acacia holosericea A. Cunn. ex G. Don to ectomycorrhizal inoculation. New For 2:105–117CrossRefGoogle Scholar
  52. Feng G, Song YC, Li XL, Christie P (2003) Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl Soil Ecol 22:139–148CrossRefGoogle Scholar
  53. Filion M, Starnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  54. Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12Google Scholar
  55. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent Pseudomonads associated with the Douglas Fir-laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedPubMedCentralGoogle Scholar
  56. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  57. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206PubMedCrossRefGoogle Scholar
  58. Garbaye (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  59. George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257–270CrossRefGoogle Scholar
  60. Gerdemann JW (1974) Vesicula-arbuscular mycorrhiza. Academic, New YorkGoogle Scholar
  61. Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, Petiti L, Cruveiller S, Bianciotto V, Piffanelli P, Lanfranco L, Bonfante P (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–145PubMedCrossRefGoogle Scholar
  62. Gryndler MJJ (2003) Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol 22:283–287CrossRefGoogle Scholar
  63. Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol (Praha) 45:545–551CrossRefGoogle Scholar
  64. Hamel C (2007) Extraradical arbuscular mycorrhizal mycelia: shadowy figures in the soil. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production: applying knowledge. Haworth, Binghampton, pp 1–36Google Scholar
  65. Hamel C, Barrantes-Cartin U, Furlan V, Smith D (1991) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138:33–40CrossRefGoogle Scholar
  66. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157PubMedCrossRefGoogle Scholar
  67. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefGoogle Scholar
  68. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267PubMedCrossRefGoogle Scholar
  70. Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98:59–78Google Scholar
  71. Hodge A (2014) Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv Appl Microbiol 89:47–99PubMedCrossRefGoogle Scholar
  72. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299PubMedCrossRefGoogle Scholar
  73. Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56:34–43PubMedCrossRefGoogle Scholar
  74. Jaderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180PubMedCrossRefGoogle Scholar
  75. Jansa J, Bukovska P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Front Plant Sci 4:134. doi: 10.3389/fpls.2013.00134 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jargeat P, Cosseau C, Ola’H B, Jauneau A, Bonfante P, Batut J, Becard G (2004) Isolation, free-living capacities, and genome structure of “Candidatus glomeribacter gigasporarum,” the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884PubMedPubMedCentralCrossRefGoogle Scholar
  77. Joner EJ, Van Aarle IM, Vosátka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210CrossRefGoogle Scholar
  78. Jorquera M, Hernandez M, Rengel Z, Marschner P, Mora M (2008) Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034CrossRefGoogle Scholar
  79. Kabir Z, O’Halloran I, Fyles J, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:285–293CrossRefGoogle Scholar
  80. Kapoor A, Mukherji K, Kapoor R (1998) Microbial interactions in mycorrhizosphere of Anethum graveolens L. Phytomorphology 48:383–389Google Scholar
  81. Kasiamdari R, Smith S, Smith F, Scott E (2002) Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil 238:235–244CrossRefGoogle Scholar
  82. Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518PubMedCrossRefGoogle Scholar
  83. Krishna K, Bagyaraj D (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351CrossRefGoogle Scholar
  84. Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207PubMedCrossRefGoogle Scholar
  85. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256PubMedPubMedCentralCrossRefGoogle Scholar
  86. Linderman R (1988) Mycorrhizal interactions with the rhizosphere microflora – the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  87. Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay G, Linderman R (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Special Publication No. 54. Madison, WI, pp 45–70Google Scholar
  88. Lioussanne L (2007) Rôles des modifications de la microflore bactérienne et de l’exudation racinaire de la tomate par la symbiose mycorhizienne dans le biocontrôlesur le Phytophthora nicotianae. Doctoral thesis, University of Montreal, Montreal [In French]Google Scholar
  89. Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8:51–61CrossRefGoogle Scholar
  90. Lopez MF, Manner P, Willmann A, Hampp R, Nehls U (2007) Increased trehalose biosynthesis in hartig net hyphae of ectomycorrhizas. New Phytol 174:389–398PubMedCrossRefGoogle Scholar
  91. Lumini E, Ghignone S, Bianciotto V, Bonfante P (2006) Endobacteria or bacterial endosymbionts? To be or not to be. New Phytol 170:205–208PubMedCrossRefGoogle Scholar
  92. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Becard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729PubMedCrossRefGoogle Scholar
  93. MacDonald RM, Chandler MR (1981) Bacterium-like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol 89:241–246CrossRefGoogle Scholar
  94. Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hypha of a Glomus species. Int J Plant Sci 159:581–589CrossRefGoogle Scholar
  95. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  96. Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizosphere of roots colonized by arbuscular mycorrhizal fungi. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizoshere. Springer, Berlin, pp 139–154CrossRefGoogle Scholar
  97. Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678PubMedCrossRefGoogle Scholar
  98. Mayo K, Davis R, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 3:426–431CrossRefGoogle Scholar
  99. Meyer J, Linderman R (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth promoting bacterium Pseudomonas putida. Soil Biol Biochem 18:185–190CrossRefGoogle Scholar
  100. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  101. Minerdi D, Banciotto V, Bonfante P (2002) Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences. Plant Soil 244:211–219CrossRefGoogle Scholar
  102. Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE (2012) Evolutionary stability in a 400-million-year-old heritable facultative mutualism. Evolution 66:2564–2576PubMedCrossRefGoogle Scholar
  103. Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedCrossRefGoogle Scholar
  104. Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520PubMedCrossRefGoogle Scholar
  105. Mosse B (1970) Honey-coloured sessile Endogone spores: II Changes in fine structure during spore development. Arch Mykrobiol 74:146–159CrossRefGoogle Scholar
  106. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  107. Naumann M, Schussler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871PubMedCrossRefGoogle Scholar
  108. Olsson PA, Thingstrup I, Jakobsen I, Baath E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887CrossRefGoogle Scholar
  109. Ordonez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438PubMedPubMedCentralCrossRefGoogle Scholar
  110. Oswald ET, Ferchau HA (1968) Bacterial associations of coniferous mycorrhizae. Plant Soil 28:187–192CrossRefGoogle Scholar
  111. Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New YorkGoogle Scholar
  112. Potera C (1996) Biofilms invade microbiology. Science 5283:1795–1797CrossRefGoogle Scholar
  113. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534PubMedCrossRefGoogle Scholar
  114. Rawlings GB (1958) Some practical aspects of forest mycotrophy. NZ Soc Soil Sci Proc 3:41–44Google Scholar
  115. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  116. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  117. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacb gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144PubMedCrossRefGoogle Scholar
  119. Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–144PubMedCrossRefGoogle Scholar
  120. Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivila T, Haahtela K, Romantschuk M et al (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine ectomycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126CrossRefGoogle Scholar
  121. Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R et al (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826PubMedCrossRefGoogle Scholar
  122. Sarand I, Haario H, Jørgensen KS, Romantschuk M (2000) Effect of inoculation of a TOL plasmid containing mycorrhizosphere bacterium on development of Scots pine seedlings, their mycorrhizosphere and the microbial flora in m- toluate-amended soil. FEMS Microbiol Ecol 31:127–141PubMedCrossRefGoogle Scholar
  123. Scannerini S, Bonfante P (1991) Bacteria and bacteria like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R (eds) Symbiosis as source of evolutionary innovation: speciation and morphogenesis. The MIT Press, CambridgeGoogle Scholar
  124. Scheublin TR, Sanders IR, Keel C, VanDerMeer JR (2010) Characterization of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763PubMedCrossRefGoogle Scholar
  125. Schreiner R, Mihara K, McDaniel H, Bethlenfalvay G (1997) Mycorrhizal functioning influence plant and soil functions and interactions. Plant Soil 188:199–209CrossRefGoogle Scholar
  126. Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15–21CrossRefGoogle Scholar
  127. Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas. Can J Microbiol 12:1069–1073CrossRefGoogle Scholar
  128. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  129. Smith S, Read D (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  130. Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  131. Soderberg KH, Olsson PA, Baath E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40:223–231PubMedCrossRefGoogle Scholar
  132. Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227CrossRefGoogle Scholar
  133. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140PubMedCrossRefGoogle Scholar
  134. Taylor TN, Krings M (2005) Fossil microorganisms and land plants: associations and interactions. Symbiosis 40:119–135Google Scholar
  135. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll Daniel Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcon-Aguilar C, Bcard G, Bonfante P, Harrison MJ, Kuster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders Ian R, Shachar-Hill Y, Tuskan G, JPW Y, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769PubMedCrossRefGoogle Scholar
  136. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei DFN, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San CH, Shapiro H, van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110:20117–20122PubMedPubMedCentralCrossRefGoogle Scholar
  137. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40PubMedCrossRefGoogle Scholar
  138. Toljander J, Lindahl B, Paul L, Elfstrand M, Finlay R (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 2:295–304CrossRefGoogle Scholar
  139. Torres-Cortes G, Ghignone S, Bonfante P, Schussler A (2015) Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci U S A 112:7785–7790PubMedPubMedCentralCrossRefGoogle Scholar
  140. Torsvik V, Øvreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  141. Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f.sp. basilica. Plant Pathol 57:1109–1116CrossRefGoogle Scholar
  142. Tylka G, Hussey R, Roncadori R (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: Effects of selected Streptomyces species. Phytopathology 81:754–759CrossRefGoogle Scholar
  143. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027PubMedPubMedCentralCrossRefGoogle Scholar
  144. van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefGoogle Scholar
  145. Vierheilig H (2004) Regulatory mechanisms during the plant arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176CrossRefGoogle Scholar
  146. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256PubMedCrossRefGoogle Scholar
  147. Vósatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251CrossRefGoogle Scholar
  148. Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49CrossRefGoogle Scholar
  149. Wang F, Shi N, Jiang R, Zhang F, Feng G (2016) In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. J Exp Bot 67:1689–1701PubMedPubMedCentralCrossRefGoogle Scholar
  150. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  151. Wiemken V (2007) Trehalose synthesis in ectomycorrhizas – a driving force of carbon gain for fungi? New Phytol 174:228–230PubMedCrossRefGoogle Scholar
  152. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586CrossRefGoogle Scholar
  153. Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203CrossRefGoogle Scholar
  154. Xavier L, Germida J (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar
  155. Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183CrossRefGoogle Scholar
  156. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Geetanjali Manchanda
    • 1
    Email author
  • Raghvendra Pratap Singh
    • 2
  • Zhi Feng Li
    • 2
  • Jun Jie Zhang
    • 3
  1. 1.Department of BotanyD.A.V. UniversityJalandharIndia
  2. 2.State Key Laboratory of Microbial Technology, College of Life ScienceShandong UniversityJinanPeople’s Republic of China
  3. 3.College of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations