Soil: Do Not Disturb, Mycorrhiza in Action

  • Cristina CruzEmail author
  • Alessandro Ramos
  • Olubukola Oluranti Babalola
  • Hessini Kamel
  • Teresa Dias
  • Ajit Varma


Fungi are key actors in controlling primary productivity. Depending on the fungal functional group, they may promote or decrease plant productivity. It is consensual that arbuscular mycorrhizal and some endophytic fungi contribute to promote plant productivity and defense against phytopathogenic organisms, including fungi. However, there is not much information about the relation between the distinct functional groups of fungi. In this chapter, we aim at understanding the importance of arbuscular mycorrhizal fungi (Glomus intraradices) and Piriformospora indica (Serendipita indica) inoculation in the tolerance of Tomato (Solanum lycopersicum) plants to fusarium wilt.

Tomato plants grown at two nutritional levels were inoculated with Glomus intraradices and/or Piriformospora indica (Serendipita indica) and then infected with Fusarium oxysporum. Plant biomass accumulation showed that plants inoculated with Glomus intraradices and Piriformospora indica (Serendipita indica) accumulated more biomass and were more tolerant to Fusarium wilt. The analysis of the root exudates showed that fungal infection changed the composition of the root exudates and pointed out the importance of antioxidant compounds.


Arbuscular Mycorrhizal Fungus Root Exudate Chlorogenic Acid Endophytic Fungus Fusarium Wilt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Ajit Varma is thankful to Department of Science and Technology and Department of Biotechnology for partial financial funding and to DST-FIST for providing confocal microscope facility.


  1. Amaral DOJ, Almeida CMA, Malafaia CB, Silva MLRB, Correia MTS, Lima VLM, Silva MV (2013) Identification of races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici by molecular markers. Afr J Microbiol Res 7:2324–2331. doi: 10.5897/AJMR12.2234 Google Scholar
  2. Astley S (2003) Dietary antioxidants: past, present and future? Trends Food Sci Technol 14:93–98CrossRefGoogle Scholar
  3. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-Up Study. Am J Clin Nutr 76:93–99PubMedGoogle Scholar
  4. Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068Google Scholar
  5. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761CrossRefPubMedGoogle Scholar
  6. Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MA (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum: consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156CrossRefPubMedGoogle Scholar
  7. Dighton J (2016) Fungi in ecosystem processes, 2nd edn. CRC Press, New York, pp 155–189CrossRefGoogle Scholar
  8. Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  9. Hage-Ahmed K, Moyses A, Voglgruber A, Hadacek F, Steinkellner S (2013) Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the soilborne pathogen Fusarium oxysporum f.sp. lycopersici. J Phytopathol 161:763–773CrossRefGoogle Scholar
  10. Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664CrossRefPubMedGoogle Scholar
  12. Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC–MS metabolomics. J Chromatogr B 871:191–201CrossRefGoogle Scholar
  13. Kopka J, Schauer N, Krueger S (2005) GMD.CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638CrossRefPubMedGoogle Scholar
  14. Lallemand LA, Zubieta C, Lee SG, Wang Y, Acajjaoui S, Timmins J, McSweeney S, Jez JM, McCarthy JG, McCarthy AA (2012) A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiol 160:249–260CrossRefPubMedPubMedCentralGoogle Scholar
  15. Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol 150:1567–1575CrossRefPubMedPubMedCentralGoogle Scholar
  16. Melo IS (1998) Agentes microbianos de controle de fungos fitopatogênicos. In: Melo IS, Azevedo JL (eds) Controle Biológico, vol 1. Embrapa Meio Ambiente, Jaguariúna, pp 17–67Google Scholar
  17. Nelson EB (1990) Exudate molecules initiating fungal responses to seeds and roots. Plant Soil 129:61–73CrossRefGoogle Scholar
  18. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754CrossRefPubMedGoogle Scholar
  19. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160CrossRefGoogle Scholar
  20. Schwartz HF, Steadman JR, Hall R, Forster RL (eds) (2005) Compendium of bean diseases, 2nd edn. American Phytopathological Society, St. Paul, p 120Google Scholar
  21. Sharma MPAG, Mukerji KG (2007) Arbuscular mycorrhiza mediated plant pathogen interactions and the mechanisms involved. In: Chincholkar SB, Mukerji KJ (eds) Biochemical control of plant diseases. Haworth Press, New York, pp 47–74Google Scholar
  22. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, pp 110–130Google Scholar
  23. Steinkellner S, Hage-Ahmed K, Garcıa-Garrido JM, Illana A, Ocampo JA, Vierheilig H (2011) A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f.sp. lycopersici. Mycorrhiza 22:189–194CrossRefPubMedGoogle Scholar
  24. Termoshuizen AJ (2014) Root pathogens. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth. Springer Science and Baseness Media, Dordrecht, pp 119–137CrossRefGoogle Scholar
  25. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedPubMedCentralGoogle Scholar
  26. Volpin HE, Okon Y, Kapulnik Y (1994) A vesicular-arbuscular mycorrhiza (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol 104:683–689CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wellman FL (1939) A technique for studying host resistance and pathogenicity in tomato Fusarium wilt. Phytopathology 29:945–956Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristina Cruz
    • 1
    Email author
  • Alessandro Ramos
    • 2
  • Olubukola Oluranti Babalola
    • 3
  • Hessini Kamel
    • 4
  • Teresa Dias
    • 1
  • Ajit Varma
    • 5
  1. 1.Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (Ce3C)Universidade de LisboaLisbonPortugal
  2. 2.Laboratory of Biochemistry and Physiology of MicroorganismsUniversidade Estadual do Norte Fluminense (UENF)Campos dos GoytacazesBrazil
  3. 3.Food Security and Safety Niche, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMmabathoSouth Africa
  4. 4.Biology Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  5. 5.Amity Institute of Microbial Technology (AIMT)Amity University Uttar PradeshNoida, Gautam Buddha NagarIndia

Personalised recommendations