Skip to main content

Response of Arbuscular Mycorrhizal Fungi to Global Climate Change and Their Role in Terrestrial Ecosystem C and N Cycling

  • Chapter
  • First Online:
Book cover Mycorrhiza - Function, Diversity, State of the Art

Abstract

The global climate change presents a serious threat to nature and has been predicted to largely impact the life of human beings in the twenty-first century. The Intergovernmental Panel on Climate Change predicted that human-induced climate change is a major threat and also emphasized to develop global plans for mitigation and adaptation to climate change. Taking into consideration the existing feedbacks between carbon cycle and climate change, understanding whether terrestrial ecosystems will respond to elevated atmospheric carbon dioxide concentration (eCO2) or up to what extent is of utmost significance. In the global ecosystems, CO2 is largely used by plants in the process of photosynthesis (net primary production). On the other hand, microbes contribute directly, to a great extent, to net carbon exchange through decomposition and respiration and indirectly by developing symbiotic associations with plants. One of the most common symbiotic associations established between plants and fungi is known as arbuscular mycorrhizal fungi (AMF). This association facilitates the host plants for the better acquisition of water and nutrients and seems to sequester soil organic carbon. AMF could play a vital role in the global carbon cycle, as they can utilize a large proportion of the carbon fixed by the plants, deposit slow-cycling organic compounds (glomalin), and protect organic matter from microbial attack by promoting soil aggregation. In view of the importance of AM symbiosis in the terrestrial ecosystems, this chapter highlights whether the arbuscular mycorrhizal fungi contribute to soil carbon sequestration or influence soil carbon decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Clark RB (1999) Varied rates of mycorrhizal inoculum on growth and nutrient acquisition by barley grown with drought stress. J Plant Nutr 22:1775–1784

    Article  CAS  Google Scholar 

  • Antibus RK, Lauber C, Sinsabaugh RL, Zak DR (2006) Responses of Bradford-reactive soil protein to experimental nitrogen addition in three forest communities in northern lower Michigan. Plant Soil 288:173–187

    Article  CAS  Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, He X, Tang H, Shan B, Zhao L (2009) Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu US sandland, China. Soil Biol Biochem 41:941–947

    Article  CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contribution to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca I (2010) Plants, mycorrhizal fungi and bacteria: a network of interaction. Annu Rev Microbiol 63:363–383

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:1–7

    Article  CAS  Google Scholar 

  • Caesar J, Lowe JA (2012) Comaparing the impacts of mitigation verses non-intervention scenarios on future temperature and precipitation extremes in the HadGE2 climate model. J Geophys Res 117:1–14

    Article  Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and non legume root epidermis. New Phytol 189:347–355

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Kuzyakov Y (2005) Root effects on soil organic matter decomposition. Agronomy 48:119–140

    CAS  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-meler MA, Phillips R, Asao S, Mcnickle GG, Brzostek E, Jastrow JD (2013) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen KE (2013) Roots and associated fungi drive long-term carbon sequestration in Boreal Forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Del Giorgio PA, Duarte CM (2002) Respiration in the open ocean. Nature 420:379–384

    Article  CAS  PubMed  Google Scholar 

  • Drigo B, Kowalchuk G, van Veen J (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107:10939–10942

    Article  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Toby Kiers E, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:72666–72671

    Article  Google Scholar 

  • Frank AB (1885) Über die auf Würzelsymbiose beruhende Ehrnährung gewisser Bäum durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft (in German) 3:128–145

    Google Scholar 

  • Gerdemann JW, Trappe JM (1974) Endogonaceae in the Pacific North West. Mycol Mem 5:1–76

    Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zaches JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  CAS  Google Scholar 

  • Hartge KH, Stewart BA (1995) Soil structure. Its development and function. Advances in soil science. CRC Lewis, Boca Raton, FL, pp 424. isbn: 1–56670–173-2

    Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker JE, Black KE (1995) Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit Rev Biotechnol 15:210–212

    Article  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble JM, Follet RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, FL, pp 207–223

    Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 7:905–916

    Article  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)-C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33:1–5

    Google Scholar 

  • King GM (2011) Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol 19:75–84

    Article  CAS  PubMed  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2012) Climate change mitigation by managing the terrestrial biosphere. In: Lal R, Klaus L, Reinhard FH, Bernd US, von Joachim B (eds) Recarbonization of the biosphere. Springer, Dordrecht, pp 17–39

    Chapter  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Leifheit EF, Verbruggen E, Rillig MC (2015) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328

    Article  CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Loboda T (2012) Understanding origins and impacts of drought. Eos 93:417. doi:10.1029/2012EO420007

    Article  Google Scholar 

  • Lovelock CE, Wright SF, Nichols KA (2004a) Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rainforest soil. Soil Biol Biochem 36:1009–1012

    Article  CAS  Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004b) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate region Europe. Clim Chang 70:117–135

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer Academic, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  CAS  PubMed  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols KA, Wright SF (2004) Contributions of soil fungi to organic matter in agricultural soils. In: Magdoff F, Weil R (eds) Functions and management of soil organic matter in agroecosystems. CRC Press, Boca Raton, FL, pp 179–198

    Google Scholar 

  • Nichols K, Wright SF, Dzantor EK (2002) Glomalin: hiding place for a third of the world’s stored soil carbon. Agri Res Mag 50:4–7. www.ars.usda.gov/is/AR/archive/sep02/soil0902.htm

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Oehl F, da Silva GA, Sánchez-Castro I, Goto BT, Maia LC, Evangelista Vieira HEE, Barea JM, Sieverding E, Palenzuela J (2011) Revision of Glomeromycetes with entrophosporoid and glomoid spore formation with three new genera. Mycotaxon 117:297–316

    Article  Google Scholar 

  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502

    Article  PubMed  Google Scholar 

  • Pachauri RK, Reisinger A (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional tradeoffs in arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci 276:4237–4245

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–396

    Article  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Rillig MC (2004a) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol lett 7:740–754

    Article  Google Scholar 

  • Rillig MC (2004b) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001a) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7:333–337

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001b) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Rosewarne GM, Barker SJ, Smith SE (1997) Production of near-synchronous fungal colonization in tomato for development and molecular analyses of mycorrhiza. Mycol Res 101:966–970

    Article  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billionyearold) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new Genera (Libraries at the Royal Botanic Garden Edinburgh, Edinburgh; The Royal Botanic Garden Kew, Kew; Botanische Staatssammlung Munich, Munich; and Oregon State University, Corvallis, OR). pp 1–56

    Google Scholar 

  • Schüβler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Poggeler S, Wostemeyer J (eds) Evolution of fungi and fungal-like organisms. Springer, Berlin, pp 163–185

    Chapter  Google Scholar 

  • Schüβler A, Mollenhauer D, Schnepf E, Kluge M (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schüβler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  CAS  Google Scholar 

  • Schwarzott D, Walker C, Schüβler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non monophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Selsted MB, van der Linden L, Ibrom A, Michelsen A, Larsen KS, Pedersen JK, Mikkelsen TN, Pilegaard K, Beier C, Ambus P (2012) Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMATE). Glob Chang Biol 18:1216–1230

    Article  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza-an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Academic Press, Dordrecht, pp 1–39

    Chapter  Google Scholar 

  • Talbot JM, Treseder KK (2011) Dishing the dirt on carbon cycling. Nat Clim Chang 1:144–146

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Torres-Cortes G, Ghignone S, Bonfante P, Schüßler A (2015) Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci USA 112:7785–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK (2016) Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94:417–423

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Holden SR (2013) Fungal carbon sequestration. Science 339:1528–1529

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Verbruggen E, Veresoglou SD, Anderson IC, Caruso T, Hammer EC, Kohler J (2013) Arbuscular mycorrhizal fungi—short-term liability but long-term benefits for soil carbon storage? New Phytol 197:366–368

    Article  PubMed  Google Scholar 

  • Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016) Do arbuscular mycorrhizal fungi stabilize litter derived carbon in soil? J Ecol 104:261–269

    Article  CAS  Google Scholar 

  • Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)—a possible way forward. Agronomie 12:887–897

    Article  Google Scholar 

  • Wayman RL (1991) Global climate change and life on earth. Chapman and Hall, New York, p 282

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wright SF (2000) A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi. Plant Soil 226:171–177

    Article  CAS  Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol Fertil Soils 31:249–253

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–585

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoproteins produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1999) Quantification of arbuscular mycorrhizal activity by the glomalin concentration on hyphae. Mycorrhiza 8:283–285

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829

    Article  CAS  Google Scholar 

  • Wright SF, Nichols KA, Schmidt WF (2006) Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Wright SF, Green VS, Cavigelli MA (2007) Glomalin in aggregate size classes from three different farming systems. Soil Tillage Res 94:546–549

    Article  Google Scholar 

  • Wu QS, Cao MQ, ZouYN HXH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4:5823. doi:10.1038/srep05823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Li S, Chen S, Ren T, Yang Z, Zhao H, Liang Y, Han X (2016) Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Sci Rep 6:19990. doi:10.1038/srep19990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors duly acknowledge the technical support provided by Mr Harsh Sharma, computer analyst, Institute of Life Long Learning, University of Delhi, Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoopander Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Giri, B., Saxena, B. (2017). Response of Arbuscular Mycorrhizal Fungi to Global Climate Change and Their Role in Terrestrial Ecosystem C and N Cycling. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. https://doi.org/10.1007/978-3-319-53064-2_15

Download citation

Publish with us

Policies and ethics