Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes in Grapevine: The Potential for Sustainable Viticulture?

  • M. LikarEmail author
  • M. Regvar


Viticulture is an important agronomic sector that has the potential to greatly benefit by improvements in our understanding of grapevine cultivation. Although conventional viticulture relies to a great extent on pesticide and fertilizer application, more sustainable approaches involve management practices that favor plant–fungus interactions that have positive effects on the nutritional quality of the grapes and reduce production costs (i.e., of pesticides and fertilizers) and thus reduce the negative effects on the environment. Fungal endophytes that colonize grapevines belong to different taxa, with the majority of reports focusing on fungi that form arbuscular mycorrhizal associations. These fungal endophytes have been demonstrated to confer beneficial growth and nutrition effects to their plant hosts via improved exploitation of the substrate and improved tolerance of the grapevine to abiotic and biotic stresses. Here, we review current knowledge on the importance and potential of these diverse fungal groups for grapevine production and expose the gaps in our understanding of possible functions of fungal groups that are currently little studied. In addition, we underline the effects of sustainable agricultural practices on fungal communities, to boost the progress in different viticultural techniques on the interactions between fungal endophytes and grapevines.


Arbuscular Mycorrhizal Fungus Fungal Endophyte Arbuscular Mycorrhizal Fungus Species Arbuscular Mycorrhizal Fungus Community Arbuscular Mycorrhizal Fungus Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alguacil MM, Torres MP, Torrecillas E et al (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173. doi: 10.1016/j.soilbio.2010.09.029 CrossRefGoogle Scholar
  2. Balestrini R, Magurno F, Walker C et al (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604. doi: 10.1111/j.1758-2229.2010.00160.x CrossRefPubMedGoogle Scholar
  3. Baumgartner K, Smith RF, Bettiga L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111–119. doi: 10.1007/s00572-004-0309-2 CrossRefPubMedGoogle Scholar
  4. Belew D, Astatkie T, Mokashi MN et al (2010) Effects of salinity and mycorrhizal inoculation (Glomus fasciculatum) on growth responses of grape rootstocks (Vitis spp.) S Afr J Enol Vitic 31:82–88Google Scholar
  5. Biricolti S, Ferrini F, Rinaldeli E et al (1997) VAM fungi and soil lime content influence rootstock growth and nutrient content. Am J Enol Vitic 48:93–99Google Scholar
  6. Błaszkowski J, Wubet T, Harikumar VSS et al (2010) Glomus indicum, a new arbuscular mycorrhizal fungus. Botany 88:132–143. doi: 10.1139/B09-104 CrossRefGoogle Scholar
  7. Borstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298. doi: 10.1007/s00374-005-0026-9 CrossRefGoogle Scholar
  8. Bouffaud M, Bernaud E, Colombet A et al (2016) Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy vineyards. J Int des Sci la Vigne du Vin 50:1–8Google Scholar
  9. Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130. doi: 10.1139/b01-138 CrossRefGoogle Scholar
  10. Cheng X, Baumgartner K (2004) Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol Fertil Soils 40:406–412. doi: 10.1007/s00374-004-0797-4 CrossRefGoogle Scholar
  11. de Felice DV, Solfrizzo M, De Curtis F et al (2008) Strains of Aureobasidium pullulans can lower ochratoxin A contamination in wine grapes. Phytopathology 98:1261–1270. doi: 10.1094/PHYTO-98-12-1261 CrossRefPubMedGoogle Scholar
  12. de Oliveira Freitas N, Yano-Melo AM, Barbosa da Silva FS, de Melo NF, Costa Maia L (2011) Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Sci Agric 68:223–229CrossRefGoogle Scholar
  13. De Stefano S, Nicoletti R, Milone A, Zambardino S (1999) 3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry 52:1399–1401. doi: 10.1016/S0031-9422(99)00320-9 CrossRefGoogle Scholar
  14. Dickie IA (2006) Mycorrhiza of forest ecosystems. In: Lal E (ed) Encyclopedia of soil science. Taylor and Francis, New York, pp 1111–1114Google Scholar
  15. Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165. doi: 10.1016/j.indcrop.2012.01.022 CrossRefGoogle Scholar
  16. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078. doi: 10.1139/b96-131 CrossRefGoogle Scholar
  18. Fitter AH, Graves JD, Watkins NK et al (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412CrossRefGoogle Scholar
  19. Gallou A, Mosquera HPL, Cranenbrouck S et al (2011) Mycorrhiza-induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76:20–26. doi: 10.1016/j.pmpp.2011.06.005 CrossRefGoogle Scholar
  20. Gams W, Holubova-Jechova V (1976) Chloridium and some other dematiaceous Hyphomycetes growing on decaying wood. Stud Mycol 13:1–99Google Scholar
  21. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi: 10.1007/s00572-003-0274-1 CrossRefPubMedGoogle Scholar
  22. Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi: 10.1007/s00374-003-0636-z CrossRefGoogle Scholar
  23. Girlanda M, Perotto S, Luppi AM (2006) Molecular diversity and ecological roles of mycorrhiza-associated sterile fungal endophytes in mediterranean ecosystems. In: Schulz B, Boyle C, Sieber T (eds) Soil biology. Springer, Berlin, pp 207–226Google Scholar
  24. Hao Z, Fayolle L, van Tuinen D et al (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672. doi: 10.1093/jxb/ers046 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haselwandter K, Read D (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62. doi: 10.1007/BF00346707 CrossRefPubMedGoogle Scholar
  26. Hausmann NT, Hawkes CV (2010) Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology 91:2333–2343. doi: 10.1890/09-0924.1 CrossRefPubMedGoogle Scholar
  27. Havlin JL, Kissel DE, Maddux LD et al (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452. doi: 10.2136/sssaj1990.03615995005400020026x CrossRefGoogle Scholar
  28. Hennebert G, Bellemere A (1979) Les formes conidiennes des Discomycetes. Essai tax- onomique. Rev Mycol 43:259–352Google Scholar
  29. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi: 10.1016/j.phytochem CrossRefPubMedGoogle Scholar
  30. Jiang Q, Zhuo F, Long S et al (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805. doi: 10.1038/srep21805 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johnson D, Vandenkoornhuyse PJ, Leake JR et al (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi: 10.1046/j.1469-8137.2003.00938.x CrossRefGoogle Scholar
  32. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal ? Mycorrhiza 11:207–211. doi: 10.1007/s005720100112 CrossRefGoogle Scholar
  33. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. doi: 10.1046/j.1469-8137.1998.00265.x CrossRefGoogle Scholar
  34. Karagiannidis N, Nikolaou N (1999) Arbuscular mycorrhizal root infection as an important factor of grapevine nutrition status. Multivariate analysis application for evaluation and characterization of the soil and leaf parameters. Agrochimica 43:151–165Google Scholar
  35. Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112CrossRefPubMedGoogle Scholar
  36. Knapp DG, Pintye A, Kovacs GM (2012) The dark side is not fastidious? Dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One 7:1–8. doi: 10.1371/journal.pone.0032570 CrossRefGoogle Scholar
  37. Li LF, Li T, Zhao ZW (2007) Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza 17:655–665CrossRefPubMedGoogle Scholar
  38. Li L-F, Li T, Zhang Y, Zhao Z-W (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427. doi: 10.1111/j.1574-6941.2009.00815.x CrossRefPubMedGoogle Scholar
  39. Likar M, Regvar M (2013) Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370:593–604. doi: 10.1007/s11104-013-1656-6 CrossRefGoogle Scholar
  40. Likar M, Hančević K, Radić T, Regvar M (2013) Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23:209–219. doi: 10.1007/s00572-012-0463-x CrossRefPubMedGoogle Scholar
  41. Likar M, Vogel-Mikuš K, Potisek M et al (2015) Importance of soil and vineyard management in the determination of grapevine mineral composition. Sci Total Environ 505:724–731. doi: 10.1016/j.scitotenv.2014.10.057 CrossRefPubMedGoogle Scholar
  42. Lin X, Feng Y, Zhang H et al (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771. doi: 10.1021/es3001695 CrossRefPubMedGoogle Scholar
  43. Linderman RG, Davis EA (2001) Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Am J Enol Vitic 52:8–11Google Scholar
  44. Liu W, Zhang Y, Jiang S et al (2016) Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6:24902. doi: 10.1038/srep24902 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. doi: 10.1111/j.1462-2920.2009.02099.x PubMedGoogle Scholar
  46. Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204:192–200. doi: 10.1111/nph.12927 CrossRefPubMedGoogle Scholar
  47. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189. doi: 10.3114/sim.53.1.173 CrossRefGoogle Scholar
  48. Menge J, Raski D, Lider L (1983) Interactions between mycorrhizal fungi, soil fumigation, and growth of grapes in California. Am J Enol Vitic 34:117–121Google Scholar
  49. Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arct Alp Res 30:121–125. doi: 10.2307/1552126 CrossRefGoogle Scholar
  50. Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90. doi: 10.1007/s11104-004-2066-6 CrossRefGoogle Scholar
  51. Nappi P, Jodice R, Luzzati A, Corino L (1985) Grapevine root system and VA mycorrhizae in some soils of Piedmont (Italy). Plant Soil 85:205–210. doi: 10.1007/BF02139624 CrossRefGoogle Scholar
  52. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. doi: 10.1111/j.1469-8137.2010.03611.x CrossRefPubMedGoogle Scholar
  53. Nikolaou N, Angelopoulos K, Karagiannidis N (2003) Effects of drought stress on mycorrhizal and non-mycorrhizal cabernet sauvignon grapevine, grafted onto various rootstocks. Exp Agric 39:241–252. doi: 10.1017/S001447970300125X CrossRefGoogle Scholar
  54. Nogales A, Luque J, Estaún V et al (2009) Differential growth of mycorrhizal field-inoculated grapevine rootstocks in two replant soils. Am J Enol Vitic 60:484–489Google Scholar
  55. Nunez-Trujillo G, Cabrera R, Burgos-Reyes RL, Da Silva E, Gimenez C, Cosoveanu A, Brito N (2012) Endophytic fungi from Vitis vinifera L. isolated in Canary Islands and Azores as potential biocontrol agents of Botrytis cinerea Pers.:Fr. J Hortic Forestry Biotechnol 16:1–6Google Scholar
  56. Ocete R, Armendariz I, Cantos M et al (2015) Ecological characterization of wild grapevine habitats focused on arbuscular mycorrhizal symbiosis. Vitis 54:207–211Google Scholar
  57. Oehl F, Sieverding E, Mäder P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. doi: 10.1007/s00442-003-1458-2 CrossRefPubMedGoogle Scholar
  58. Oehl F, Sieverding E, Ineichen K et al (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. doi: 10.1111/j.1469-8137.2004.01235.x CrossRefPubMedGoogle Scholar
  59. Pancher M, Ceol M, Corneo PE et al (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) Respond to crop management. Appl Environ Microbiol 78:4308–4317. doi: 10.1128/AEM.07655-11 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Petit E, Gubler WD (2006) Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Dis 90:1481–1484. doi: 10.1094/PD-90-1481 CrossRefGoogle Scholar
  61. Piccolo S, Alfonzo A, Burruano S, Moschetti G (2016) Detection of bacterial endophytes in Vitis vinifera L. and antibiotic activity against grapevine fungal pathogens. In: Compant S, Methieu F (eds) Biocontrol of major grapevine diseases: leading research. CABI, Boston, pp 182–190CrossRefGoogle Scholar
  62. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315. doi: 10.1146/annurev-phyto-080508-081831 CrossRefPubMedGoogle Scholar
  63. Radić T, Hančević K, Likar M, Bogdanović I (2012) Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine. Symbiosis 56:111–120. doi: 10.1007/s13199-012-0165-3 CrossRefGoogle Scholar
  64. Radić T, Likar M, Hančević K et al (2014) Occurrence of root endophytic fungi in organic versus conventional vineyards on the Croatian coast. Agric Ecosyst Environ 192:115–121. doi: 10.1016/j.agee.2014.04.008 CrossRefGoogle Scholar
  65. Regvar M, Bukovnik U, Likar M, Kreft I (2012) UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Cent Eur J Biol 7:275–283. doi: 10.2478/s11535-012-0017-4 Google Scholar
  66. Reynolds AG (ed) (2010) Front matter. In: Managing wine quality. Woodhead Publishing, Oxford, pp 1–3Google Scholar
  67. Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186. doi: 10.1111/j.1365-294X.2004.02295.x CrossRefPubMedGoogle Scholar
  68. Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.) Ann Bot 68:135–141CrossRefGoogle Scholar
  69. Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191. doi: 10.1128/AEM.02187-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schol-Schwarz M (1970) Revision of the genus Phialophora (Moniliales). Persoonia 6:59–94Google Scholar
  71. Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. J Enol Vitic 3:143–149Google Scholar
  72. Schreiner RP (2005) Mycorrhizas and mineral acquisition in grapevines. In: Christensen LP, Smart DR (eds) Proceedings of the soil environment and vine mineral nutrition symposium. pp 49–60Google Scholar
  73. Schreiner PR (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of “Pinot noir” (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215. doi: 10.1016/j.apsoil.2007.03.002 CrossRefGoogle Scholar
  74. Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611. doi: 10.3852/08-169 CrossRefPubMedGoogle Scholar
  75. Schubert A, Cravero MC (1985) Occurrence and infectivity of vesicular-arbuscular mycorrhizal fungi in north-western Italy vineyards. Vitis 24:129–138Google Scholar
  76. Schubert A, Cammarata S, Eynard I (1988) Growth and root colonization of grapevines inoculated with different mycorrhizal endophytes. Hortic Sci 23:302–303Google Scholar
  77. Smart DR, Schwass E, Lakso A, Morano L (2006) Grapevine rooting patterns: a comprehensive Analysis and a review. Am J Enol Vitic 57:89–104Google Scholar
  78. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  79. Steenwerth K, Belina KM (2008) Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40:359–369. doi:10.1016/j.apsoil.2008.06.006CrossRefGoogle Scholar
  80. Stockinger H, Walker C, Schüssler A (2009) Glomus intraradices DAOM197198, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183: 1176–1187Google Scholar
  81. Ulrichs C, Fischer G, Büttner C, Mewis I (2008) Comparison of lycopene, b -carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi ( AMF ). Agron Colomb 26:40–46Google Scholar
  82. van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17:1–10. doi: 10.1080/09571260600633135 CrossRefGoogle Scholar
  83. van Rooyen M, Valentine AJ, Archer E (2004) Arbuscular mycorrhizal colonisation modifies the water relations of young transplanted grapevines (Vitis). S Afr J Enol Vitic 25:37–42Google Scholar
  84. Varma A, Verma S, Sudha et al (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedPubMedCentralGoogle Scholar
  85. Varma A, Bakshi M, Lou B et al (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131. doi: 10.1007/s40003-012-0019-5 CrossRefGoogle Scholar
  86. Verbruggen E, Van Der Heijden MGA, Weedon JT et al (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353. doi: 10.1111/j.1365-294X.2012.05534.x CrossRefPubMedGoogle Scholar
  87. Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scoleco-spored Ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129Google Scholar
  88. Wang FW, Jiao RH, Cheng AB et al (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83. doi: 10.1007/s11274-006-9195-4 CrossRefGoogle Scholar
  89. Zhang T, Yang X, Guo R, Guo J (2016) Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci Rep 6:24749. doi: 10.1038/srep24749 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations