Advertisement

Ectomycorrhizal Fungi: A Major Player in Early Succession

  • Izabela L. KałuckaEmail author
  • Andrzej M. Jagodziński
Chapter

Abstract

Ectomycorrhizal (ECM) fungi are a key organism group enabling and enhancing the process of open land colonization by ECM-dependent trees and shrubs. Through their functional traits, interactions with both abiotic and biotic environment, and their own successional dynamics, they significantly affect woody vegetation succession coupled with soil and ecosystem development. In this chapter, we review the role of ECM fungi in the processes of early primary and secondary succession, including non-anthropogenic natural systems, like glacier forefronts, volcanic deserts, and sand dunes, as well as major sites disturbed by intensive human activity, such as mine spoils, fire-affected sites, clear-cuts and timber harvesting areas, and post-agricultural lands. Successional traits of ECM fungal community reflecting their life histories and species composition, dispersal, spatial and temporal structure, host preferences, and sensitivity to environmental filters underpin key ecosystem services provided by ECM fungi in the processes of forest development, management, and restoration. While the rapidly increasing influence of climate change, environmental damage, species invasions, and biodiversity reduction become obvious, ECM fungi and their successional traits must be considered in afforestation and carbon sequestration polices, in sustainable forest management, as well as in biodiversity conservation and rehabilitation practices.

Keywords

Mine Spoil Spore Bank Common Mycorrhizal Network Glacier Forefront Volcanic Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This review was supported by the Ministry of Science and Higher Education, Warsaw, Poland (grant nos. 3 P04G 031 23 and N N305 2996 40) and by General Directorate of State Forests, Warsaw, Poland (research project “Environmental and genetic factors affecting productivity of forest ecosystems in forest and post-industrial habitats”). The authors would like to thank Dr. Douglas Zook (Global Ecology Education Initiative, Boston University, USA) and Dr. Joanna Kazik (University Centre Doncaster, UK) for linguistic revision of the manuscript.

References

  1. Afkhami ME, Rudgers JA, Stachowicz JJ (2014) Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology 95:833–844. doi: 10.1890/13-1010.1 PubMedCrossRefGoogle Scholar
  2. Alfredsen G, Høiland K (2001) Succession of terrestrial macrofungi along a deglaciation gradient at Glacier Blaisen, South Norway. Nord J Bot 21:19–37. doi: 10.1111/j.1756-1051.2001.tb01335.x CrossRefGoogle Scholar
  3. Allen MF, Allen EB (1992) Mycorrhizae and plant community development: mechanisms and patterns. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 455–479Google Scholar
  4. Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453. doi: 10.1016/S0953-7562(09)81089-7 CrossRefGoogle Scholar
  5. Andrews JH (1992) Fungal life-history strategies. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 119–145Google Scholar
  6. Andrews JH, Harris RF (1986) r-selection and K-selection and microbial ecology. Adv Microb Ecol 9:99–147CrossRefGoogle Scholar
  7. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354. doi: 10.1111/j.1469-8137.2005.01593.x PubMedCrossRefGoogle Scholar
  8. Baar J (1996) The ectomycorrhizal flora of primary and secondary stands of Pinus sylvestris in relation to soil conditions and ectomycorrhizal succession. J Veg Sci 7:497–504. doi: 10.2307/3236298 CrossRefGoogle Scholar
  9. Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418. doi: 10.1046/j.1469-8137.1999.00452.x CrossRefGoogle Scholar
  10. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. doi: 10.1111/nph.13206 PubMedCrossRefGoogle Scholar
  11. Barker JS, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172:1179–1189. doi: 10.1007/s00442-012-2562-y PubMedCrossRefGoogle Scholar
  12. Bauman JM, Keiffer CH, Hiremath S, McCarthy BC (2013) Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration. J Appl Ecol 50:721–729. doi: 10.1111/1365-2664.12070 CrossRefGoogle Scholar
  13. Begon M, Harper JL, Townsend CR (1996) Ecology. Individuals, populations and communities, 3rd edn. Blackwell Science, OxfordCrossRefGoogle Scholar
  14. Bento-Gonçalves A, Vieira A, Ubeda X, Martin D (2012) Fire and soils: key concepts and recent advances. Geoderma 191:3–13. doi: 10.1016/j.geoderma.2012.01.004 CrossRefGoogle Scholar
  15. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi: 10.1016/j.tplants.2012.04.001 PubMedCrossRefGoogle Scholar
  16. Bergemann SE, Miller SL (2002) Size, distribution, and persistence of genets in local populations of the late-stage ectomycorrhizal basidiomycete, Russula brevipes. New Phytol 156:313–320. doi: 10.1046/j.1469-8137.2002.00507.x CrossRefGoogle Scholar
  17. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi: 10.1016/j.tree.2010.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bingham MA, Simard S (2012) Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15:188–199. doi: 10.1007/s10021-011-9502-2 CrossRefGoogle Scholar
  19. Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908. doi: 10.1111/j.1365-294X.2011.05214.x PubMedCrossRefGoogle Scholar
  20. Blasius D, Oberwinkler F (1989) Succession of mycorrhizae—a matter of tree age or stand age. Ann For Sci 46:758–761. doi: 10.1051/forest:198905ART0169 CrossRefGoogle Scholar
  21. Boerner REJ, DeMars BG, Leicht PN (1996) Spatial patterns of mycorrhizal infectiveness of soils long a successional chronosequence. Mycorrhiza 6:79–90. doi: 10.1007/s005720050111 CrossRefGoogle Scholar
  22. Bois G, Piché Y, Fung MYP, Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149–158. doi: 10.1007/s00572-004-0315-4 PubMedCrossRefGoogle Scholar
  23. Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497. doi: 10.1111/mec.12487 PubMedCrossRefGoogle Scholar
  24. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. doi: 10.1007/s11104-008-9877-9 CrossRefGoogle Scholar
  25. Bruns TD (1995) Thoughts on the process that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73. doi: 10.1007/bf02183055 CrossRefGoogle Scholar
  26. Bruns T, Tan J, Bidartondo M, Szaro T, Redecker D (2002) Survival of Suillus pungens and Amanita francheti ectomycorrhizal genets was rare or absent after a stand-replacing wildfire. New Phytol 155:517–523. doi: 10.1046/j.1469-8137.2002.00468.x CrossRefGoogle Scholar
  27. Buscardo E, Rodríguez-Echeverría S, Martín MP, De Angelis P, Pereira JS, Freitas H (2010) Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114:628–636. doi: 10.1016/j.funbio.2010.05.004 PubMedCrossRefGoogle Scholar
  28. Buscardo E, Freitas H, Pereira JS, De Angelis P (2011) Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest. Mycorrhiza 21:549–558. doi: 10.1007/s00572-011-0363-5 PubMedCrossRefGoogle Scholar
  29. Buscardo E, Rodríguez-Echeverría S, Barrico L, García MA, Freitas H, Martín MP, De Angelis P, Muller LAH (2012) Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol Biochem 46:136–144. doi: 10.1016/j.soilbio.2011.12.007 CrossRefGoogle Scholar
  30. Buscot F (2015) Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol 172:55–61. doi: 10.1016/j.jplph.2014.08.013 PubMedCrossRefGoogle Scholar
  31. Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207–215. doi: 10.1139/x06-190 CrossRefGoogle Scholar
  32. Çakan H, Karataş C (2006) Interactions between mycorrhizal colonization and plant life forms along the successional gradient of coastal sand dunes in the eastern Mediterranean, Turkey. Ecol Res 21:301–310. doi: 10.1007/s11284-005-0134-x CrossRefGoogle Scholar
  33. Cázares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86:507–510. doi: 10.2307/3760743 CrossRefGoogle Scholar
  34. Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416. doi: 10.1007/s00572-004-0342-1 PubMedCrossRefGoogle Scholar
  35. Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biol Biochem 11:557–562. doi: 10.1016/0038-0717(79)90021-x CrossRefGoogle Scholar
  36. Chu-Chou M, Grace LJ (1981) Mycorrhizal fungi of Pseudotsuga menziesii in the North Island of New Zealand. Soil Biol Biochem 13:247–249. doi: 10.1016/0038-0717(81)90029-8 CrossRefGoogle Scholar
  37. Chu-Chou M, Grace LJ (1988) Mycorrhizal fungi of radiata pine in different forests of the north and south islands in New Zealand. Soil Biol Biochem 20:883–886. doi: 10.1016/0038-0717(88)90098-3 CrossRefGoogle Scholar
  38. Clements FE (1916) Plant succession. An analysis of the development of vegetation. The Carnegie Institution of Washington, Washington, DCCrossRefGoogle Scholar
  39. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in Boreal Forest. Science 339:1615–1618. doi: 10.1126/science.1231923 PubMedCrossRefGoogle Scholar
  40. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi: 10.1111/nph.13208 PubMedCrossRefGoogle Scholar
  41. Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009. doi: 10.1111/j.1469-8137.2005.01387.x PubMedCrossRefGoogle Scholar
  42. Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963. doi: 10.1111/j.1365-2745.2009.01544.x CrossRefGoogle Scholar
  43. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24. doi: 10.1007/s13595-010-0003-9 CrossRefGoogle Scholar
  44. Compton JE, Hooker TD, Perakis SS (2007) Ecosystem N distribution and delta N-15 during a century of forest regrowth after agricultural abandonment. Ecosystems 10:1197–1208. doi: 10.1007/s10021-007-9087-y CrossRefGoogle Scholar
  45. Conesa HM, Schulin R (2010) The Cartagena—La Union mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit 12:1225–1233. doi: 10.1039/c000346h PubMedCrossRefGoogle Scholar
  46. Cooke RC, Rayner ADM (1984) Ecology of Saprotrophic fungi. Longman, LondonGoogle Scholar
  47. Corkidi L, Rincón E (1997) Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. 1. Mycorrhizal status and inoculum potential along a successional gradient. Mycorrhiza 7:9–15. doi: 10.1007/s005720050157 CrossRefGoogle Scholar
  48. Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–112. doi: 10.1016/j.tree.2007.10.005 PubMedCrossRefGoogle Scholar
  49. Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in fennoscandian boreal forests. Silva Fenn 36:69−80 doi: 10.14214/sf.551
  50. Dahlberg A, Schimmel J, Taylor AFS, Johannesson H (2001) Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol Conserv 100:151–161. doi: 10.1016/s0006-3207(00)00230-5 CrossRefGoogle Scholar
  51. Danielson RM (1991) Temporal changes and effects of amendments on the occurrence of sheathing (ecto-)mycorrhizas of conifers growing in oil sands tailings and coal spoil. Agric Ecosyst Environ 35:261–281. doi: 10.1016/0167-8809(91)90054-2 CrossRefGoogle Scholar
  52. Danielson RM, Visser S (1989) Host response to inoculation and behaviour of introduced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can J For Res 19:1412–1421. doi: 10.1139/x89-216 CrossRefGoogle Scholar
  53. Danielson RM, Visser S, Parkinson D (1983) Microbial activity and mycorrhizal potential of four overburden types used in the reclamation of extracted oil sands. Can J Soil Sci 63:363–337CrossRefGoogle Scholar
  54. de la Bastide PY, Kropp BR, Piche Y (1994) Spatial distribution and temporal persistence of discrete genotypes of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton. New Phytol 127:547–556CrossRefGoogle Scholar
  55. de Román M, de Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482. doi: 10.1007/s00572-005-0353-6 PubMedCrossRefGoogle Scholar
  56. Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant-fungal process. Chapman & Hall, London, pp 249–300Google Scholar
  57. Deacon JW, Donaldson SJ, Last FT (1983) Sequences and interactions of mycorrhizal fungi on birch. Plant Soil 71:257–262. doi: 10.1007/bf02182660 CrossRefGoogle Scholar
  58. Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255. doi: 10.1111/j.1365-2745.2005.00977.x CrossRefGoogle Scholar
  59. Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505–521. doi: 10.1890/0012-9615(2002)072[0505:IOETOM]2.0.CO;2 CrossRefGoogle Scholar
  60. Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320. doi: 10.1111/j.1365-2745.2006.01202.x CrossRefGoogle Scholar
  61. Dickie IA, Richardson SJ, Wiser SK (2009) Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Can J For Res 39:1069–1079. doi: 10.1139/X09-036 CrossRefGoogle Scholar
  62. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484. doi: 10.1111/j.1469-8137.2010.03277.x PubMedCrossRefGoogle Scholar
  63. Dickie IA, Yeates GW, St John MG, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MUF, Hunt JE, Burrows LE, Barbour MM, Aislabie J (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934. doi: 10.1111/j.1365-2664.2011.01980.x CrossRefGoogle Scholar
  64. Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39. doi: 10.1007/s11104-013-1609-0 CrossRefGoogle Scholar
  65. Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS (2014) Mycorrhizas in changing ecosystems. Botany 92:149–160. doi: 10.1139/cjb-2013-0091 CrossRefGoogle Scholar
  66. Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 117–139Google Scholar
  67. Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development—with specific reference to mycorrhizal species. Trans Br Mycol Soc 87:163–171CrossRefGoogle Scholar
  68. Ding Q, Liang Y, Legendre P, He X-h, Pei K-q, Du X-j, Ma K-p (2011) Diversity and composition of ectomycorrhizal community on seedling roots: the role of host preference and soil origin. Mycorrhiza 21:669–680. doi: 10.1007/s00572-011-0374-2 PubMedCrossRefGoogle Scholar
  69. Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, MadrasCrossRefGoogle Scholar
  70. Dominik T (1951) Badania mykotrofizmu roślinności wydm nadmorskich i śródlądowych. Acta Soc Bot Pol 21:125–164CrossRefGoogle Scholar
  71. Douhan GW, Vincenot L, Gryta H, Selosse M-A (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597. doi: 10.1016/j.funbio.2011.03.005 PubMedCrossRefGoogle Scholar
  72. Durall DM, Gamiet S, Simard SW, Kudrna L, Sakakibara SM (2006) Effects of clearcut logging and tree species composition on the diversity and community composition of epigeous fruit bodies formed by ectomycorrhizal fungi. Can J Bot 84:966–980. doi: 10.1139/b06-045 CrossRefGoogle Scholar
  73. Faliński JB (1986) Vegetation dynamics in temperate lowland primeval forests. Ecological studies in Białowieża Forest. Geobotany 8:1−537 (Dr W. Junk Publishers, Dordrecht, Boston, Lancaster)Google Scholar
  74. Faliński JB (1998) Dioecious woody pioneer species (Juniperus communis, Populus tremula, Salix sp. div.) in the secondary succession and regeneration. Phytocoenosis 10 (N.S.) Suppl Cartogr Geobot 8:1−156Google Scholar
  75. Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12:117–128. doi: 10.1071/wf02042 CrossRefGoogle Scholar
  76. Ford ED, Mason PA, Pelham J (1980) Spatial patterns of sporophore distribution around a young birch tree in three successive years. Trans Br Mycol Soc 75:287–296CrossRefGoogle Scholar
  77. Frankland JC (1992) Mechanisms in fungal succession. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 383–401Google Scholar
  78. Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15. doi: 10.1017/s0953756297005364 CrossRefGoogle Scholar
  79. Friedrich S (2001) Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland). Acta Mycol 36:127–148CrossRefGoogle Scholar
  80. Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar Biol 34:667–673. doi: 10.1007/s00300-010-0922-9 CrossRefGoogle Scholar
  81. Gáper J, Lizoň P (1995) Sporocarp succession of mycorrhizal fungi in the Norway spruce plantations in formerly agricultural land. In: Baluška F, Ciamporova M, Gasparikova O, Barlow PW (eds) Structure and function of roots. Kluver Academic Publishers, Dordrecht, pp 349–352CrossRefGoogle Scholar
  82. Gebhardt S, Neubert K, Wöllecke J, Müenzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17:279–290. doi: 10.1007/s00572-006-0103-4 PubMedCrossRefGoogle Scholar
  83. Gleason HA (1939) The individualistic concept of the plant association. Am Midl Nat 21:92–110CrossRefGoogle Scholar
  84. Glen M, Bougher NL, Colquhoun IJ, Vlahos S, Loneragan WA, O’Brien P, Hardy GESJ (2008) Ectomycorrhizal fungal communities of rehabilitated bauxite mines and adjacent, natural jarrah forest in Western Australia. For Ecol Manage 255:214–225. doi: 10.1016/j.foreco.2007.09.007 CrossRefGoogle Scholar
  85. Glenn-Lewin DC, Peet RK, Veblen TT (1992) Plant succession—theory and prediction. Chapman and Hall, LondonGoogle Scholar
  86. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  87. Grime JP (1979) Plant strategies and vegetation process. Wiley, New YorkGoogle Scholar
  88. Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062. doi: 10.1046/j.1365-2745.2000.00511.x CrossRefGoogle Scholar
  89. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294. doi: 10.1007/s11056-004-8303-2 CrossRefGoogle Scholar
  90. Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lohmus A, Pastur GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:633–645. doi: 10.1525/bio.2012.62.7.6 CrossRefGoogle Scholar
  91. Hagerman SM, Durall DM (2004) Ectomycorrhizal colonization of greenhouse-grown Douglas-fir (Pseudotsuga menziesii) seedlings by inoculum associated with the roots of refuge plants sampled from a Douglas-fir forest in the southern interior of British Columbia. Can J Bot 82:742–751. doi: 10.1139/b04-047 CrossRefGoogle Scholar
  92. Hagerman SM, Jones MD, Bradfield GE, Sakakibara SM (1999a) Ectomycorrhizal colonization of Picea engelmannii x Picea glauca seedlings planted across cut blocks of different sizes. Can J For Res 29:1856–1870CrossRefGoogle Scholar
  93. Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999b) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J For Res 29:124–134CrossRefGoogle Scholar
  94. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220:166–184. doi: 10.1016/j.foreco.2005.08.012 CrossRefGoogle Scholar
  95. Hedlund K, Gormsen D (2002) Mycorrhizal colonization of plants in set-aside agricultural land. Appl Soil Ecol 19:71–78. doi: 10.1016/s0929-1393(01)00174-3 CrossRefGoogle Scholar
  96. Helm DJ, Carling DE (1993) Use of soil transfer for reforestation on abandoned mined lands in Alaska. II. Effects of soil transfers from different successional stages on growth and mycorrhizal formation by Populus balsamifera and Alnus crispa. Mycorrhiza 3:107–114. doi: 10.1007/bf00208918 CrossRefGoogle Scholar
  97. Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506CrossRefGoogle Scholar
  98. Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier, Alaska. Mycorrhiza 8:297–304. doi: 10.1007/s005720050250 CrossRefGoogle Scholar
  99. Hernández-Rodríguez M, Andres Oria-de-Rueda J, Martín-Pinto P (2013) Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. For Ecol Manage 289:48–57. doi: 10.1016/j.foreco.2012.10.009 CrossRefGoogle Scholar
  100. Hewitt RE, Bent E, Hollingsworth TN, Chapin FS III, Taylor DL (2013) Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience 20:296–310. doi: 10.2980/20-3-3620 CrossRefGoogle Scholar
  101. Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7. doi: 10.1186/1741-7007-7-13
  102. Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488:209–212. doi: 10.1038/nature11238 PubMedCrossRefGoogle Scholar
  103. Hilszczańska D, Sierota Z (2006) Persistence of ectomycorrhizas by Thelephora terrestris on outplanted Scots pine seedlings. Acta Mycol 41:313–318CrossRefGoogle Scholar
  104. Hilszczańska D, Sierota Z, Małecka M (2011) Ectomycorrhizal status of Scots pine saplings growing in post-agricultural soils. Pol J Environ Stud 20:83–88Google Scholar
  105. Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N: 14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268. doi: 10.1007/s00442-005-0208-z PubMedCrossRefGoogle Scholar
  106. Hodkinson ID, Webb NR, Coulson SJ (2002) Primary community assembly on land—the missing stages: why are the heterotrophic organisms always there first? J Ecol 90:569–577. doi: 10.1046/j.1365-2745.2002.00696.x CrossRefGoogle Scholar
  107. Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north-west Svalbard. J Ecol 91:651–663. doi: 10.1046/j.1365-2745.2003.00786.x CrossRefGoogle Scholar
  108. Holden SR, Gutierrez A, Treseder KK (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan Boreal Forests. Ecosystems 16:34–46. doi: 10.1007/s10021-012-9594-3 CrossRefGoogle Scholar
  109. Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11–18. doi: 10.1007/s005720050205 CrossRefGoogle Scholar
  110. Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44. doi: 10.1016/j.ejsobi.2007.10.004 CrossRefGoogle Scholar
  111. Huang J, Nara K, Lian C, Zong K, Peng K, Xue S, Shen Z (2012) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb-Zn mine sites of central south China. Mycorrhiza 22:589–602. doi: 10.1007/s00572-012-0436-0 PubMedCrossRefGoogle Scholar
  112. Huang J, Nara K, Zong K, Wang J, Xue S, Peng K, Shen Z, Lian C (2014) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecol 9:1–10. doi: 10.1016/j.funeco.2014.01.001 CrossRefGoogle Scholar
  113. Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88:322–329. doi: 10.1007/s001140100241 PubMedCrossRefGoogle Scholar
  114. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440. doi: 10.1111/j.1469-8137.2007.02016.x PubMedCrossRefGoogle Scholar
  115. Ishida TA, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180:491–500. doi: 10.1111/j.1469-8137.2008.02572.x PubMedCrossRefGoogle Scholar
  116. Izzo A, Canright M, Bruns TD (2006) The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol Res 110:196–202. doi: 10.1016/j.mycres.2005.08.010 PubMedCrossRefGoogle Scholar
  117. Jagodziński AM, Kałucka I (2010) Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64:19–30Google Scholar
  118. Jagodziński AM, Kałucka I (2011) Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 66:71–84Google Scholar
  119. Jagodziński AM, Kałucka I, Horodecki P, Oleksyn J (2014) Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology 72:139−150 doi: 10.12657/denbio.072.012
  120. Jansen AE (1991) The mycorrhizal status of Douglas fir in The Netherlands: its relation with stand age, regional factors, atmospheric pollutants and tree vitality. Agric Ecosyst Environ 35:191–208. doi: 10.1016/0167-8809(91)90051-x CrossRefGoogle Scholar
  121. Jenny H (1980) The soil resource, origin and behaviour. Springer, New YorkCrossRefGoogle Scholar
  122. Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422. doi: 10.1046/j.1469-8137.2003.00698.x CrossRefGoogle Scholar
  123. Jones MD, Twieg BD, Durall DM, Berch SM (2008) Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. For Ecol Manage 255:1342–1352. doi: 10.1016/j.foreco.2007.10.042 CrossRefGoogle Scholar
  124. Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi: 10.1111/j.1365-2435.2010.01699.x CrossRefGoogle Scholar
  125. Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, Karen O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215. doi: 10.1046/j.1365-294x.1999.00553.x CrossRefGoogle Scholar
  126. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578. doi: 10.1046/j.1469-8137.2003.00767.x CrossRefGoogle Scholar
  127. Jumpponen A, Egerton-Warburton LM (2005) Mycorrhizal fungi in successional environments—a community assembly model incorporating host plant, environmental and biotic filters. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, Singapore, pp 139–180Google Scholar
  128. Jumpponen A, Trappe JM, Cázares E (1999a) Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia 91:575–582. doi: 10.2307/3761242 CrossRefGoogle Scholar
  129. Jumpponen A, Vare H, Mattson KG, Ohtonen R, Trappe JM (1999b) Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105. doi: 10.1046/j.1365-2745.1999.00328.x CrossRefGoogle Scholar
  130. Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49. doi: 10.1007/s00572-001-0152-7 PubMedCrossRefGoogle Scholar
  131. Jumpponen A, Brown SP, Trappe JM, Cázares E, Strommer R (2012) Twenty years of research on fungal-plant interactions on Lyman Glacier forefront—lessons learned and questions yet unanswered. Fungal Ecol 5:430–442. doi: 10.1016/j.funeco.2012.01.002 CrossRefGoogle Scholar
  132. Kałucka I (2009) Macrofungi in the secondary succession on the abandoned farmland near the Białowieża old-growth forest. Monogr Bot 99:1–155CrossRefGoogle Scholar
  133. Kałucka I, Jagodziński AM (2013) Grzyby ektomykoryzowe w obiegu węgla w ekosystemach leśnych. Ectomycorrhizal fungi and carbon dynamics in forest ecosystems. Sylwan 157:817–830Google Scholar
  134. Kałucka IL, Jagodziński AM (2016) Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review. Dendrobiology 76:91–104. doi: 10.12657/denbio.076.009
  135. Kałucka IL, Jagodziński AM, Nowiński M (2016) Biodiversity of ectomycorrhizal fungi in surface mine spoil restoration stands in Poland—first time recorded, rare and red-listed species. Acta Mycol 51(2):1080. doi: 10.5586/am.1080
  136. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411. doi: 10.1016/j.tplants.2011.04.002 PubMedCrossRefGoogle Scholar
  137. Keizer PJ, Arnolds E (1994) Succession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, The Netherlands. Mycorrhiza 4:147–159. doi: 10.1007/bf00203533 CrossRefGoogle Scholar
  138. Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472. doi: 10.1016/j.funbio.2010.03.008 PubMedCrossRefGoogle Scholar
  139. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228. doi: 10.1007/s00442-011-1981-5 PubMedCrossRefGoogle Scholar
  140. Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370. doi: 10.1111/j.1469-8137.2010.03550.x PubMedCrossRefGoogle Scholar
  141. Kõljalg U, Dahlberg A, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson KH, Fransson PM, Kårén O, Jonsson L (2000) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol Ecol 9:1985–1996. doi: 10.1046/j.1365-294X.2000.01105.x PubMedCrossRefGoogle Scholar
  142. Kranabetter JM (1999) The effect of refuge trees on a paper birch ectomycorrhiza community. Can J Bot 77:1523–1528CrossRefGoogle Scholar
  143. Kranabetter JM, Friesen J (2002) Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Can J Bot 80:861–868. doi: 10.1139/b02-071 CrossRefGoogle Scholar
  144. Kranabetter JM, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189–196Google Scholar
  145. Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2005) Ectomycorrhizal mushroom distribution by stand age in western hemlock—lodgepole pine forests of northwestern British Columbia. Can J For Res 35:1527–1539. doi: 10.1139/x05-095 CrossRefGoogle Scholar
  146. Kranabetter JM, De Montigny L, Ross G (2013) Effectiveness of green-tree retention in the conservation of ectomycorrhizal fungi. Fungal Ecol 6:430–438. doi: 10.1016/j.funeco.2013.05.001 CrossRefGoogle Scholar
  147. Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079. doi: 10.1016/j.mycres.2008.02.004 PubMedCrossRefGoogle Scholar
  148. Kutorga E, Adamonytė G, Iršėnaitė R, Juzėnas S, Kasparavičius J, Markovskaja S, Motiejūnaitė J, Treigienė A (2012) Wildfire and post-fire management effects on early fungal succession in Pinus mugo plantations, located in Curonian Spit (Lithuania). Geoderma 191:70–79. doi: 10.1016/j.geoderma.2012.02.007 CrossRefGoogle Scholar
  149. Kuuluvainen T, Bergeron Y, Coates KD (2015) Restoration and ecosystem-based management in the circumboreal forest: background, challenges, and opportunities. In: Stanturf JA (ed) Restoration of boreal and temperate forests, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, Singapore, pp 251–270Google Scholar
  150. Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. J Biogeogr 24:663–673. doi: 10.1111/j.1365-2699.1997.tb00076.x CrossRefGoogle Scholar
  151. Last FT, Mason PA, Wilson J, Deacon JW (1983) Fine roots and sheathing mycorrhizas: their formation, function and dynamics. Plant Soil 71:9–21. doi: 10.1007/bf02182637 CrossRefGoogle Scholar
  152. Last FT, Dighton J, Mason PA (1987) Successions of sheathing mycorrhizal fungi. Trends Ecol Evol 2:157–161. doi: 10.1016/0169-5347(87)90066-8 PubMedCrossRefGoogle Scholar
  153. Lazaruk LW, Kernaghan G, Macdonald SE, Khasa D (2005) Effects of partial cutting on the ectomycorrhizae of Picea glauca forests in northwestern Alberta. Can J For Res 35:1442–1454. doi: 10.1139/x05-062 CrossRefGoogle Scholar
  154. Lazaruk LW, Macdonald SE, Kernaghan G (2008) The effect of mechanical site preparation on ectomycorrhizae of planted white spruce seedlings in conifer-dominated boreal mixedwood forest. Can J For Res 38:2072–2079. doi: 10.1139/x08-035 CrossRefGoogle Scholar
  155. LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172:257–269. doi: 10.1007/s00442-012-2471-0 PubMedCrossRefGoogle Scholar
  156. Leski T, Pietras M, Rudawska M (2010) Ectomycorrhizal fungal communities of pedunculate and sessile oak seedlings from bare-root forest nurseries. Mycorrhiza 20:179–190. doi: 10.1007/s00572-009-0278-6 PubMedCrossRefGoogle Scholar
  157. Longo MS, Urcelay C, Nouhra E (2011) Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. For Ecol Manage 262:348–354. doi: 10.1016/j.foreco.2011.03.041 CrossRefGoogle Scholar
  158. Lunt PH, Hedger JN (2003) Effects of organic enrichment of mine spoil on growth and nutrient uptake in oak seedlings inoculated with selected ectomycorrhizal fungi. Restor Ecol 11:125–130. doi: 10.1046/j.1526-100X.2003.09968.x CrossRefGoogle Scholar
  159. Luoma DL, Eberhart JL, Molina R, Amaranthus MP (2004) Response of ectomycorrhizal fungus sporocarp production to varying levels and patterns of green-tree retention. For Ecol Manage 202:337–354. doi: 10.1016/j.foreco.2004.07.041 CrossRefGoogle Scholar
  160. Luoma DL, Stockdale CA, Molina R, Eberhart JL (2006) The spatial influence of Pseudotsuga menziesii retention trees on ectomycorrhiza diversity. Can J For Res 36:2561–2573. doi: 10.1139/x06-143 CrossRefGoogle Scholar
  161. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJGoogle Scholar
  162. Macdonald SE, Landhäusser SM, Skousen J, Franklin J, Frous J, Hall S, Jacobs DF, Quideau S (2015) Forest restoration following surface mining disturbance: challenges and solutions. New For 46:703–732. doi: 10.1007/s11056-015-9506-4 CrossRefGoogle Scholar
  163. Malajczuk N, Reddell P, Brundrett M (1994) Role of ectomycorrhizal fungi in minesite reclamation. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health, The American phytopathological society symposium series. APS Press, Minnesota, pp 83–100Google Scholar
  164. Maremmani A, Bedini S, Matosevic I, Tomei PE, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13:33–40. doi: 10.1007/s00572-002-0194-5 PubMedCrossRefGoogle Scholar
  165. Marx DH (1975) Mycorrhizae and establishment of trees on strip-mined land. Ohio J Sci 75:288–297Google Scholar
  166. Marx DH (1977) Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 23:217–223PubMedCrossRefGoogle Scholar
  167. Marx DH, Marrs LF, Cordell CE (2002) Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, agriculture, and horticulture. Dendrobiology 47:27–40Google Scholar
  168. Mason PA, Last FT, Pelham J, Ingleby K (1982) Ecology of some fungi associated with an ageing stand of birches (Betula pendula and Betula pubescens). For Ecol Manage 4:19–39. doi: 10.1016/0378-1127(82)90026-3 CrossRefGoogle Scholar
  169. Mason PA, Wilson J, Last FT, Walker C (1983) The concept of succession in relation to the spread of sheathing mycorrhizal fungi on inoculated tree seedlings growing in unsterile soils. Plant Soil 71:247–256. doi: 10.1007/bf02182659 CrossRefGoogle Scholar
  170. Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2007) Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi-impact on plant performance and ectomycorrhizal community. Mycorrhiza 17:337–348. doi: 10.1007/s00572-007-0110-0 PubMedCrossRefGoogle Scholar
  171. Mihál I (1999) Production of fruiting bodies of ectomycorrhizal fungi in spruce monocultures planted on former arable land. Ekologia (Bratislava) 18:125–133Google Scholar
  172. Milad M, Schaich H, Buergi M, Konold W (2011) Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. For Ecol Manage 261:829–843. doi: 10.1016/j.foreco.2010.10.038 CrossRefGoogle Scholar
  173. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdu M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547. doi: 10.1111/j.1469-8137.2011.04045.x PubMedCrossRefGoogle Scholar
  174. Motiejūnaitė J, Adamonytė G, Iršėnaitė R, Juzėnas S, Kasparavičius J, Kutorga E, Markovskaja S (2014) Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands. Eur. J For Res 133:745–756. doi: 10.1007/s10342-013-0738-6 Google Scholar
  175. Mueller KE, Hobbie SE, Chorover J, Reich PB, Eisenhauer N, Castellano MJ, Chadwick OA, Dobies T, Hale CM, Jagodziński AM, Kałucka I, Kieliszewska-Rokicka B, Modrzyński J, Rożen A, Skorupski M, Sobczyk L, Stasińska M, Trocha LK, Weiner J, Wierzbicka A, Oleksyn J (2015) Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123:313–327. doi: 10.1007/s10533-015-0083-6 CrossRefGoogle Scholar
  176. Mühlmann O, Peintner U (2008a) Ectomycorrhiza of Kobresia myosuroides at a primary successional glacier forefront. Mycorrhiza 18:355–362. doi: 10.1007/s00572-008-0188-z PubMedCrossRefGoogle Scholar
  177. Mühlmann O, Peintner U (2008b) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180. doi: 10.1007/s00572-008-0169-2 PubMedCrossRefGoogle Scholar
  178. Mühlmann O, Bacher M, Peintner U (2008) Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95. doi: 10.1007/s00572-007-0156-z PubMedCrossRefGoogle Scholar
  179. Mujic AB, Durall DM, Spatafora JW, Kennedy PG (2016) Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytol 209:1174–1183. doi: 10.1111/nph.13677 PubMedCrossRefGoogle Scholar
  180. Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2004) AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol 164:297–303. doi: 10.1111/j.1469-8137.2004.01190.x CrossRefGoogle Scholar
  181. Münzenberger B, Golldack J, Ullrich A, Schmincke B, Hüttl RF (2004) Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinus sylvestris L.) in lignite recultivation sites. Mycorrhiza 14:193–202. doi: 10.1007/s00572-003-0257-2 PubMedCrossRefGoogle Scholar
  182. Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178. doi: 10.1111/j.1469-8137.2005.01545.x PubMedCrossRefGoogle Scholar
  183. Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198. doi: 10.1111/j.8137.2006.01744.x PubMedCrossRefGoogle Scholar
  184. Nara K (2009) Spores of ectomycorrhizal fungi: ecological strategies for germination and dormancy. New Phytol 181:245–248. doi: 10.1111/j.1469-8137.2008.02691.x PubMedCrossRefGoogle Scholar
  185. Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. doi: 10.1890/03-0373 CrossRefGoogle Scholar
  186. Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206. doi: 10.1046/j.1469-8137.2003.00724.x CrossRefGoogle Scholar
  187. Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756. doi: 10.1046/j.1469-8137.2003.00844.x CrossRefGoogle Scholar
  188. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi: 10.1016/s0378-1127(99)00032-8 CrossRefGoogle Scholar
  189. Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359. doi: 10.1890/08-2139.1 PubMedCrossRefGoogle Scholar
  190. Obase K, Tamai Y, Miyamoto T, Yajima T (2005) Macrofungal flora on the volcano Usu, deforested by 2000 eruptions. Eurasian J For Res 8:65–70Google Scholar
  191. Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17:209–215. doi: 10.1007/s00572-006-0097-y PubMedCrossRefGoogle Scholar
  192. Obase K, Tamai Y, Yajima T, Miyamoto T (2008) Mycorrhizal colonization status of plant species established in an exposed area following the 2000 eruption of Mt. Usu, Hokkaido, Japan. Landsc Ecol Eng 4:57–61. doi: 10.1007/s11355-008-0035-6 CrossRefGoogle Scholar
  193. Olszewska M, Smal H (2008) The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. I. Physical and sorptive properties. Plant Soil 305:157–169. doi: 10.1007/s11104-008-9537-0 CrossRefGoogle Scholar
  194. Onwuchekwa NE, Zwiazek JJ, Quoreshi A, Khasa DP (2014) Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas. Mycorrhiza 24:431–441. doi: 10.1007/s00572-014-0555-x PubMedCrossRefGoogle Scholar
  195. Outerbridge RA, Trofymow JA (2004) Diversity of ectomycorrhizae on experimentally planted Douglas-fir seedlings in variable retention forestry sites on southern Vancouver Island. Can J Bot 82:1671–1681. doi: 10.1139/b04-134 CrossRefGoogle Scholar
  196. Pachlewski R (1956) Badania mikotrofizmu naturalnych zespołów roślinnych na hałdach żużlowo-łupkowych w Wałbrzychu. Untersuchungen uber den Mykotrophismus der naturlichen Pflanzengesellschaften auf Schlacken-Schieferhalden in Wałbrzych. Rocz Nauk Lesn 14:267–292Google Scholar
  197. Pachlewski R (1958) Badania mikotrofizmu naturalnych zespołów roślinnych na hałdach górniczych w Knurowie i Gliwicach na Górnym Śląsku. Forschungen uber den Mykotrophismus naturlicher Pflanzengesellschaften auf Berghalden in Knurów und Gliwice (Oberschlesien). Pr Inst Badaw Lesn 182:173–209Google Scholar
  198. Park D (1968) The ecology of terrestrial fungi. In: Ainsworth GC, Sussman AS (eds) The fungi, vol 3. Academic Press, New York, pp 5–39Google Scholar
  199. Parraga-Aguado I, Querejeta J-I, González-Alcaraz M-N, Jiménez-Cárceles FJ, Conesa HM (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manage 133:51–58. doi: 10.1016/j.jenvman.2013.12.001 PubMedCrossRefGoogle Scholar
  200. Peña-Ramírez MV, Vazquez-Selem L, Siebe C (2009) Soil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835-30,500 years BP) in Mexico. Geoderma 149:224–234. doi: 10.1016/j.geoderma.2008.11.038 CrossRefGoogle Scholar
  201. Pickett STA (1989) Space for time substitutions as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135CrossRefGoogle Scholar
  202. Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136. doi: 10.2307/3565258 CrossRefGoogle Scholar
  203. Pietras M, Rudawska M, Leski T, Karliński L (2013) Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Ann For Sci 70:115–121. doi: 10.1007/s13595-012-0243-y CrossRefGoogle Scholar
  204. Pugh GJF, Boddy L (1988) A view of disturbance and life strategies in fungi. In: Boddy L, Watling R, Lyon AJE (eds) Fungi and ecological disturbance. Proc R Soc Edinburgh 94:3−11Google Scholar
  205. Rayner ADM, Todd NK (1979) Population and community structure and dynamics of fungi in decaying wood. Adv Bot Res 7:333–420CrossRefGoogle Scholar
  206. Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb B 96:89–110Google Scholar
  207. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492. doi: 10.1046/j.1469-8137.2003.00704.x CrossRefGoogle Scholar
  208. Richard F, Selosse M-A, Gardes M (2009) Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter? FEMS Microbiol Ecol 68:14–24. doi: 10.1111/j.1574-6941.2009.00646.x PubMedCrossRefGoogle Scholar
  209. Richter DD, Markewitz D, Heine PR, Jin V, Raikes J, Tian K, Wells CG (2000) Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. For Ecol Manage 138:233–248. doi: 10.1016/s0378-1127(00)00399-6 CrossRefGoogle Scholar
  210. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  211. Rincón A, Pueyo JJ (2010) Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. For Ecol Manage 260:361–369. doi: 10.1016/j.foreco.2010.04.028 CrossRefGoogle Scholar
  212. Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM, de Felipe MR (2006) Afforestation of degraded soils with Pinus halepensis Mill.: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl Soil Ecol 34:42–51. doi: 10.1016/j.apsoil.2005.12.004 CrossRefGoogle Scholar
  213. Rincón A, de Felipe MR, Fernández-Pascual M (2007) Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18:23–32. doi: 10.1007/s00572-007-0149-y PubMedCrossRefGoogle Scholar
  214. Rincón A, Santamaría BP, Ocaña L, Verdú M (2014) Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24:131–141. doi: 10.1007/s00572-013-0520-0 PubMedCrossRefGoogle Scholar
  215. Rosenvald R, Lõhmus A (2008) For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. For Ecol Manage 255:1–15. doi: 10.1016/j.foreco.2007.09.016 CrossRefGoogle Scholar
  216. Sawyer NA, Chambers SM, Cairney JWG (1999) Molecular investigation of genet distribution and genetic variation of Cortinarius rotundisporus in eastern Australian sclerophyll forests. New Phytol 142:561–568. doi: 10.1046/j.1469-8137.1999.00417.x CrossRefGoogle Scholar
  217. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60. doi: 10.1016/j.fbr.2012.01.001 CrossRefGoogle Scholar
  218. Smal H, Olszewska M (2008) The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil 305:171–187. doi: 10.1007/s11104-008-9538-z CrossRefGoogle Scholar
  219. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, TokyoGoogle Scholar
  220. Smith JE, Molina R, Huso MMP, Larsen MJ (2000) Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can J Bot 78:995–1001Google Scholar
  221. Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fertil Soils 41:439–446. doi: 10.1007/s00374-005-0849-4 CrossRefGoogle Scholar
  222. Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manage 91:22–46. doi: 10.1016/j.jenvman.2009.07.005 PubMedCrossRefGoogle Scholar
  223. Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112CrossRefGoogle Scholar
  224. Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850. doi: 10.1046/j.1365-294x.1999.00773.x PubMedCrossRefGoogle Scholar
  225. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. doi: 10.1016/j.fbr.2013.09.001 CrossRefGoogle Scholar
  226. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. doi: 10.1111/j.1469-8137.2008.02561.x PubMedCrossRefGoogle Scholar
  227. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. doi: 10.1007/s00572-009-0274-x PubMedCrossRefGoogle Scholar
  228. Tedersoo L, Bahram M, Ryberg M, Otsing E, Koljalg U, Abarenkov K (2014) Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Mol Ecol 23:4168–4183. doi: 10.1111/mec.12849 PubMedCrossRefGoogle Scholar
  229. Termorshuizen AJ (1991) Succession of mycorrhizal fungi in stands of Pinus sylvestris in the Netherlands. J Veg Sci 2:555–564. doi: 10.2307/3236038 CrossRefGoogle Scholar
  230. Teste FP, Simard SW (2008) Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158:193–203. doi: 10.1007/s00442-008-1136-5 PubMedCrossRefGoogle Scholar
  231. Theodorou C, Bowen GD (1987) Germination of basidiospores of mycorrhizal fungi in the rhizosphere of Pinus radiata D. Don. New Phytol 106:217–223. doi: 10.1111/j.1469-8137.1987.tb00137.x CrossRefGoogle Scholar
  232. Thiet RK, Boerner RE (2007) Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana. Mycorrhiza 17:507–517. doi: 10.1007/s00572-007-0123-8 PubMedCrossRefGoogle Scholar
  233. Tokuoka Y, Ohigashi K, Nakagoshi N (2011) Limitations on tree seedling establishment across ecotones between abandoned fields and adjacent broad-leaved forests in eastern Japan. Plant Ecol 212:923–944. doi: 10.1007/s11258-010-9868-9 CrossRefGoogle Scholar
  234. Trappe JM, Luoma DL (1992) The ties that bind: fungi in ecosystems. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 17–27Google Scholar
  235. Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan Boreal Forests. Ecol Appl 14:1826–1838. doi: 10.1890/03-5133 CrossRefGoogle Scholar
  236. Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082. doi: 10.1016/j.soilbio.2005.09.006 CrossRefGoogle Scholar
  237. Trocha LK, Kałucka I, Stasińska M, Nowak W, Dabert M, Leski T, Rudawska M, Oleksyn J (2012) Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees. Mycorrhiza 22:121–134. doi: 10.1007/s00572-011-0387-x PubMedCrossRefGoogle Scholar
  238. Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293. doi: 10.1007/s00572-003-0264-3 PubMedCrossRefGoogle Scholar
  239. Tsuyuzaki S, Hase A, Niinuma H (2005) Distribution of different mycorrhizal classes on Mount Koma, northern Japan. Mycorrhiza 15:93–100. doi: 10.1007/s00572-004-0304-7 PubMedCrossRefGoogle Scholar
  240. Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523. doi: 10.1007/s100219900047 CrossRefGoogle Scholar
  241. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. doi: 10.1111/j.1469-8137.2007.02173.x PubMedCrossRefGoogle Scholar
  242. Twieg BD, Durall DM, Simard SW, Jones MD (2009) Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 19:305–316. doi: 10.1007/s00572-009-0232-7 PubMedCrossRefGoogle Scholar
  243. van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS (2011) Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. For Ecol Manage 262:1648–1657. doi: 10.1016/j.foreco.2011.07.018 CrossRefGoogle Scholar
  244. van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. doi: 10.1111/j.1365-2745.2009.01570.x CrossRefGoogle Scholar
  245. van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841CrossRefGoogle Scholar
  246. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  247. van der Heijden EW, Vries FW, Kuyper TW (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–1832CrossRefGoogle Scholar
  248. van der Maarel E (1993) Some remarks on disturbance and its relations to diversity and stability. J Veg Sci 3:733–736CrossRefGoogle Scholar
  249. van der Putten WH, Mortimer SR, Hedlund K, Van Dijk C, Brown VK, Lepš J, Rodriguez-Barrueco C, Roy J, Len TAD, Gormsen D, Korthals GW, Lavorel S, Santa Regina I, Smilauer P (2000) Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia 124:91–99. doi: 10.1007/s004420050028 PubMedCrossRefGoogle Scholar
  250. van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH, de Boer W (2006) Fungal biomass development in a chronosequence of land abandonment. Soil Biol Biochem 38:51–60. doi: 10.1016/j.soilbio.2005.04.017 CrossRefGoogle Scholar
  251. Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401. doi: 10.1111/j.1469-8137.1995.tb04309.x CrossRefGoogle Scholar
  252. von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T, Meyer H (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manage 255:1984–1993. doi: 10.1016/j.foreco.2007.12.021 CrossRefGoogle Scholar
  253. Walker JKM, Jones MD (2013) Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites. Oecologia 173:1499–1511. doi: 10.1007/s00442-013-2713-9 PubMedCrossRefGoogle Scholar
  254. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–ll. doi: 10.1016/0016-7061(76)90066-5 CrossRefGoogle Scholar
  255. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. doi: 10.1111/j.1365-2745.2010.01664.x CrossRefGoogle Scholar
  256. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. doi: 10.1126/science.1098778 PubMedCrossRefGoogle Scholar
  257. Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30. doi: 10.1111/j.1365-2745.2011.01907.x CrossRefGoogle Scholar
  258. White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Picket STA, White PS (eds) The ecology of natural disturbances and patch dynamics. Academic Press, New York, pp 3–13Google Scholar
  259. Xu D, Dell B, Malajczuk N, Gong M (2001) Effects of P fertilisation and ectomycorrhizal fungal inoculation on early growth of eucalypt plantations in southern China. Plant Soil 233:47–57. doi: 10.1023/a:1010355620452 CrossRefGoogle Scholar
  260. Yang GT, Cha JY, Shibuya M, Yajima T, Takahashi K (1998) The occurrence and diversity of ectomycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycol Res 102:1503–1508. doi: 10.1017/s0953756298006480 CrossRefGoogle Scholar
  261. Zak JC (1992) Response of soil fungal communities to disturbance. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 403–425Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Izabela L. Kałucka
    • 1
    Email author
  • Andrzej M. Jagodziński
    • 2
    • 3
  1. 1.Faculty of Biology and Environmental Protection, Department of Algology and MycologyUniversity of ŁódźŁódźPoland
  2. 2.Institute of Dendrology, Polish Academy of SciencesKórnikPoland
  3. 3.Faculty of Forestry, Department of Game Management and Forest ProtectionPoznań University of Life SciencesPoznańPoland

Personalised recommendations