Skip to main content

Intermediate Filaments Supporting Cell Shape and Growth in Bacteria

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.

Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–564

    Article  CAS  PubMed  Google Scholar 

  • Astbury WT, Woods HJ (1930) The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 126:913–914

    Article  CAS  Google Scholar 

  • Astbury WT, Woods HJ (1933) X-ray studies on the structure of hair, wool and related fibres II: the molecular structure and elastic properties of hair keratin. Phil Trans Roy Soc Lond A 232:333–394

    Article  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713

    Article  CAS  PubMed  Google Scholar 

  • Aziz A, Hess JF, Budamagunta MS, Fitzgerald PG, Voss JC (2009) Head and rod 1 interactions in vimentin: identification of contact sites, structure, and changes with phosphorylation using site-directed spin labeling and electron paramagnetic resonance. J Biol Chem 284:7330–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz A, Hess JF, Budamagunta MS, Voss JC, Fitzgerald PG (2010) Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure. J Biol Chem 285:15278–15285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz A, Hess JF, Budamagunta MS, Voss JC, Kuzin AP, Huang YJ, Xiao R, Montelione GT, Fitzgerald PG, Hunt JF (2012) The structure of vimentin linker 1 and rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography. J Biol Chem 287:28349–28361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi S, Tomenius H, Belova LM, Ausmees N (2008) Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol Microbiol 70:1037–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batsios P, Peter T, Baumann O, Stick R, Meyer I, Graf R (2012) A lamin in lower eukaryotes? Nucleus 3:237–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Harush K, Wiesel N, Frenkiel-Krispin D, Moeller D, Soreq E, Aebi U, Herrmann H, Gruenbaum Y, Medalia O (2009) The supramolecular organization of the C. elegans nuclear lamin filament. J Mol Biol 386:1392–1402

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–536

    Article  CAS  PubMed  Google Scholar 

  • Block J, Schroeder V, Pawelzyk P, Willenbacher N, Koster S (2015) Physical properties of cytoplasmic intermediate filaments. Biochim Biophys Acta 1853:3053–3064

    Article  CAS  PubMed  Google Scholar 

  • Bramkamp M, Emmins R, Weston L, Donovan C, Daniel RA, Errington J (2008) A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol Microbiol 70:1556–1569

    Article  CAS  PubMed  Google Scholar 

  • Brana AF, Manzanal MB, Hardisson C (1982) Mode of cell-wall growth of Streptomycesantibioticus. FEMS Microbiol Lett 13:231–235

    Google Scholar 

  • Briley K Jr, Prepiak P, Dias MJ, Hahn J, Dubnau D (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81:23–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, De Pedro MA, Kysela DT, Van der Henst C, Kim J, de Bolle X, Fuqua C, Brun YV (2012) Polar growth in the Alphaproteobacterial order Rhizobiales. Proc Natl Acad Sci U S A 109:1697–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ (2013) Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. MBio 4:e00684–e00613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bush MJ, Tschowri N, Schlimpert S, Flardh K, Buttner MJ (2015) c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13:749–760

    Article  CAS  PubMed  Google Scholar 

  • Bush MJ, Chandra G, Bibb MJ, Findlay KC, Buttner MJ (2016) Genome-wide ChIP-seq analysis shows that WhiB is a transcription factor that co-controls its regulon with WhiA to initiate developmental cell division in Streptomyces. MBio 7:e00523–e00516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J 28:1208–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT, Herrmann H, Jacobs-Wagner C (2011) The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton (Hoboken) 68:205–219

    Article  CAS  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeleton. Annu Rev Genet 44:365–392

    Article  CAS  PubMed  Google Scholar 

  • Cameron TA, Anderson-Furgeson J, Zupan JR, Zik JJ, Zambryski PC (2014) Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. MBio 5:e01219–e01214

    PubMed  PubMed Central  Google Scholar 

  • Cameron TA, Zupan JR, Zambryski PC (2015) The essential features and modes of bacterial polar growth. Trends Microbiol 23:347–353

    Article  CAS  PubMed  Google Scholar 

  • Chandra G, Chater KF (2014) Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 38:345–379

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5:601–613

    Article  CAS  PubMed  Google Scholar 

  • Charbon G, Cabeen MT, Jacobs-Wagner C (2009) Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23:1131–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyatina AA, Guzenko D, Strelkov SV (2015) Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 32:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chernyatina AA, Nicolet S, Aebi U, Herrmann H, Strelkov SV (2012) Atomic structure of the vimentin central alpha-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 109:13620–13625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyatina AA, Strelkov SV (2012) Stabilization of vimentin coil2 fragment via an engineered disulfide. J Struct Biol 177:46–53

    Article  CAS  PubMed  Google Scholar 

  • Chou YH, Bischoff JR, Beach D, Goldman RD (1990) Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Ciska M, Moreno Diaz de la Espina S (2014) The intriguing plant nuclear lamina. Front Plant Sci 5:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Colakoglu G, Brown A (2009) Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. J Cell Biol 185:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman TR, Lazarides E (1992) Continuous growth of vimentin filaments in mouse fibroblasts. J Cell Sci 103(Pt 3):689–698

    CAS  PubMed  Google Scholar 

  • Crick FHC (1953) The packing of alpha-helices – simple coiled-coils. Acta Crystallogr 6:689–697

    Article  CAS  Google Scholar 

  • Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776

    Article  CAS  PubMed  Google Scholar 

  • Del Rizzo PA, Bi Y, Dunn SD, Shilton BH (2002) The “second stalk” of Escherichia coli ATP synthase: structure of the isolated dimerization domain. Biochemistry 41:6875–6884

    Article  CAS  PubMed  Google Scholar 

  • Del Sol R, Mullins JG, Grantcharova N, Flardh K, Dyson P (2006) Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188:1540–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditkowski B, Holmes N, Rydzak J, Donczew M, Bezulska M, Ginda K, Kedzierski P, Zakrzewska-Czerwinska J, Kelemen GH, Jakimowicz D (2013) Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in Streptomyces coelicolor. Open Biol 3:130006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–228

    Article  CAS  PubMed  Google Scholar 

  • Donachie WD, Begg KJ, Lutkenhaus JF, Salmond GP, Martinez-Salas E, Vincente M (1979) Role of the ftsA gene product in control of Escherichia coli cell division. J Bacteriol 140:388–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan C, Sieger B, Kramer R, Bramkamp M (2012) A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 84:105–116

    Article  CAS  PubMed  Google Scholar 

  • dos Santos VT, Bisson-Filho AW, Gueiros-Filho FJ (2012) DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. J Bacteriol 194:3661–3669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field MC (2012) NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10:e1001287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersbach G, Galli E, Moller-Jensen J, Lowe J, Gerdes K (2008) Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol 68:720–35

    Google Scholar 

  • Edwards DH, Errington J (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915

    Article  CAS  PubMed  Google Scholar 

  • Edwards DH, Thomaides HB, Errington J (2000) Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J 19:2719–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson JE, Brautigan DL, Vallee R, Olmsted J, Fujiki H, Goldman RD (1992a) Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc Natl Acad Sci U S A 89:11093–11097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117:919–932

    Article  CAS  PubMed  Google Scholar 

  • Eriksson JE, Opal P, Goldman RD (1992b) Intermediate filament dynamics. Curr Opin Cell Biol 4:99–104

    Article  CAS  PubMed  Google Scholar 

  • Esue O, Rupprecht L, Sun SX, Wirtz D (2010) Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 5:e8855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eswaramoorthy P, Erb ML, Gregory JA, Silverman J, Pogliano K, Pogliano J, Ramamurthi KS (2011) Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. MBio 2

    Google Scholar 

  • Fiuza M, Letek M, Leiba J, Villadangos AF, Vaquera J, Zanella-Cleon I, Mateos LM, Molle V, Gil JA (2010) Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J Biol Chem 285:29387–29397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flardh K (2003) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49:1523–1536

    Article  PubMed  CAS  Google Scholar 

  • Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  CAS  Google Scholar 

  • Flardh K, Richards DM, Hempel AM, Howard M, Buttner MJ (2012) Regulation of apical growth and hyphal branching in Streptomyces. Curr Opin Microbiol 15:737–743

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Unger VM, de Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchino K, Bagchi S, Cantlay S, Sandblad L, Wu D, Bergman J, Kamali-Moghaddam M, Flardh K, Ausmees N (2013) Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proc Natl Acad Sci U S A 110:E1889–E1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerace L, Huber MD (2012) Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol 177:24–31

    Article  CAS  PubMed  Google Scholar 

  • Ginda K, Bezulska M, Ziolkiewicz M, Dziadek J, Zakrzewska-Czerwinska J, Jakimowicz D (2013) ParA of Mycobacterium smegmatis co-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA. Mol Microbiol 87:998–1012

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MW, Fiserova J, Huttenlauch I, Stick R (2008) A new model for nuclear lamina organization. Biochem Soc Trans 36:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Cleland MM, Murthy SN, Mahammad S, Kuczmarski ER (2012) Inroads into the structure and function of intermediate filament networks. J Struct Biol 177:14–23

    Article  CAS  PubMed  Google Scholar 

  • Grangeon R, Zupan JR, Anderson-Furgeson J, Zambryski PC (2015) PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 112:11666–11671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber M, Lupas AN (2003) Historical review: another 50th anniversary--new periodicities in coiled coils. Trends Biochem Sci 28:679–685

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105:1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale CA, de Boer PA (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88:175–185

    Article  CAS  PubMed  Google Scholar 

  • Heitlinger E, Peter M, Haner M, Lustig A, Aebi U, Nigg EA (1991) Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions. J Cell Biol 113:485–495

    Article  CAS  PubMed  Google Scholar 

  • Heitlinger E, Peter M, Lustig A, Villiger W, Nigg EA, Aebi U (1992) The role of the head and tail domain in lamin structure and assembly: analysis of bacterially expressed chicken lamin A and truncated B2 lamins. J Struct Biol 108:74–89

    Article  CAS  PubMed  Google Scholar 

  • Helfand BT, Mendez MG, Murthy SN, Shumaker DK, Grin B, Mahammad S, AEBI U, Wedig T, Wu YI, Hahn KM, Inagaki M, Herrmann H, Goldman RD (2011) Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 22:1274–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel AM, Cantlay S, Molle V, Wang SB, Naldrett MJ, Parker JL, Richards DM, Jung YG, Buttner MJ, Flardh K (2012) The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc Natl Acad Sci U S A 109:E2371–E2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel AM, Wang SB, Letek M, Gil JA, Flardh K (2008) Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J Bacteriol 190:7579–7583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Haner M, Brettel M, Ku NO, Aebi U (1999) Characterization of distinct early assembly units of different intermediate filament proteins. J Mol Biol 286:1403–1420

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Haner M, Brettel M, Muller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. J Mol Biol 264:933–953

    Article  CAS  PubMed  Google Scholar 

  • Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932

    Article  CAS  PubMed  Google Scholar 

  • Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114:2569–2575

    CAS  PubMed  Google Scholar 

  • Holmes NA, Walshaw J, Leggett RM, Thibessard A, Dalton KA, Gillespie MD, Hemmings AM, Gust B, Kelemen GH (2013) Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proc Natl Acad Sci U S A 110:E397–E406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Ingerson-Mahar M, Briegel A, Werner JN, Jensen GJ, GITAI Z (2010) The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 12:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izard J et al (2004) Tomographic reconstruction of treponemal cytoplasmic filaments reveals novel bridging and anchoring components. Mol Microbiol 51:609–618

    Article  CAS  PubMed  Google Scholar 

  • Izard J (2006) Cytoskeletal cytoplasmic filament ribbon of Treponema: a member of an intermediate-like filament protein family. J Mol Microbiol Biotechnol 11:159–66

    Google Scholar 

  • Jakimowicz D, Chater K, Zakrzewska-Czerwinska J (2002) The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol Microbiol 45:1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D, Mouz S, Zakrzewska-Czerwinska J, Chater KF (2006) Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 188:1710–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakimowicz D, van Wezel GP (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85:393–404

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D, Zydek P, Kois A, Zakrzewska-Czerwinska J, Chater KF (2007) Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol Microbiol 65:625–641

    Article  CAS  PubMed  Google Scholar 

  • Jyothikumar V, Klanbut K, Tiong J, Roxburgh JS, Hunter IS, Smith TK, Herron PR (2012) Cardiolipin synthase is required for Streptomyces coelicolor morphogenesis. Mol Microbiol 84:181–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothikumar V, Tilley EJ, Wali R, Herron PR (2008) Time-lapse microscopy of Streptomyces coelicolor growth and sporulation. Appl Environ Microbiol 74:6774–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN (2008) Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154:725–735

    Article  CAS  PubMed  Google Scholar 

  • Kapinos LE, Schumacher J, Mucke N, Machaidze G, Burkhard P, Aebi U, Strelkov SV, Herrmann H (2010) Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 “half-minilamin” dimers. J Mol Biol 396:719–731

    Article  CAS  PubMed  Google Scholar 

  • Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 186:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapper M, Exner K, Kempf A, Gehrig C, Stuurman N, Fisher PA, Krohne G (1997) Assembly of A- and B-type lamins studied in vivo with the baculovirus system. J Cell Sci 110(Pt 20):2519–2532

    CAS  PubMed  Google Scholar 

  • Koster S, Weitz DA, Goldman RD, Aebi U, Herrmann H (2015) Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol 32:82–91

    Article  PubMed  CAS  Google Scholar 

  • Kreplak L, Bar H, Leterrier JF, Herrmann H, AEBI U (2005) Exploring the mechanical behavior of single intermediate filaments. J Mol Biol 354:569–577

    Article  CAS  PubMed  Google Scholar 

  • Kruger A, Batsios P, Baumann O, Luckert E, Schwarz H, Stick R, Meyer I, Graf R (2012) Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Mol Biol Cell 23:360–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhnel K, Jarchau T, Wolf E, Schlichting I, Walter U, Wittinghofer A, Strelkov SV (2004) The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proc Natl Acad Sci U S A 101:17027–17032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam H, Schofield WB, Jacobs-Wagner C (2006) A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Laub MT, Chen SL, Shapiro L, Mcadams HH (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D (2010) The structure of the peripheral stalk of Thermus thermophilus H + −ATPase/synthase. Nat Struct Mol Biol 17:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ, Errington J, Marenduzzo D, Hamoen LW (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letek M, Fiuza M, Ordonez E, Villadangos AF, Ramos A, Mateos LM, Gil JA (2008a) Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum. Antonie Van Leeuwenhoek 94:99–109

    Article  CAS  PubMed  Google Scholar 

  • Letek M, Ordonez E, Vaquera J, Margolin W, Flardh K, Mateos LM, Gil JA (2008b) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 190:3283–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery J, Kuczmarski ER, Herrmann H, Goldman RD (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function. J Biol Chem 290:17145–17153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manteca A, Ye J, Sanchez J, Jensen ON (2011) Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 10:5481–5492

    Article  CAS  PubMed  Google Scholar 

  • Martinez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J, Hoover TR, Bansil R, Salama NR (2016) Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol Microbiol 99:88–110

    Article  CAS  PubMed  Google Scholar 

  • Mauriello EM, Nan B, Zusman DR (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72:964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazouni K, Pehau-Arnaudet G, England P, Bourhy P, Saint Girons I, Picardeau M (2006) The scc spirochetal coiled-coil protein forms helix-like filaments and binds to nucleic acids generating nucleoprotein structures. J Bacteriol 188:469–76

    Google Scholar 

  • McCormick JR, Flardh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231

    Article  CAS  PubMed  Google Scholar 

  • McCormick JR, Su EP, Driks A, Losick R (1994) Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol 14:243–254

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, Mcadams HH (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25:584–592

    Article  CAS  PubMed  Google Scholar 

  • Meier M, Padilla GP, Herrmann H, Wedig T, Hergt M, Patel TR, Stetefeld J, Aebi U, Burkhard P (2009) Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation. J Mol Biol 390:245–261

    Article  CAS  PubMed  Google Scholar 

  • Meniche X, Otten R, Siegrist MS, Baer CE, Murphy KC, Bertozzi CR, Sassetti CM (2014) Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A 111:E3243–E3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignot T, Shaevitz JW, Hartzell PL, Zusman DR (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguelez EM, Martin C, Manzanal MB, Hardisson C (1992) Growth and morphogenesis in Streptomyces. FEMS Microbiol Lett 100:351–359

    Article  CAS  PubMed  Google Scholar 

  • Ngai J, Coleman TR, Lazarides E (1990) Localization of newly synthesized vimentin subunits reveals a novel mechanism of intermediate filament assembly. Cell 60:415–427

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ (2007) Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896–7910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolet S, Herrmann H, Aebi U, Strelkov SV (2010) Atomic structure of vimentin coil 2. J Struct Biol 170:369–376

    Article  CAS  PubMed  Google Scholar 

  • Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K (2005) Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187:2163–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Molinard G, Petty TJ, Broger L, Gabus C, Halazonetis TD, Thore S, Paszkowski J (2012) Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1. PLoS Genet 8:e1002484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, Van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58:929–944

    Article  CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Oliva MA, Halbedel S, Freund SM, Dutow P, Leonard TA, Veprintsev DB, Hamoen LW, Löwe J (2010) Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J 29:1988–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry DA, Fraser RD, Squire JM (2008) Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 163:258–269

    Article  CAS  PubMed  Google Scholar 

  • Parry DA, Steinert PM (1999) Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys 32:99–187

    Article  CAS  PubMed  Google Scholar 

  • Parry DA, Strelkov SV, Burkhard P, Aebi U, Herrmann H (2007) Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res 313:2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Patrick JE, Kearns DB (2008) MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70:1166–1179

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persat A, Stone HA, Gitai Z (2014) The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat Commun 5:3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters J, Baumeister W, Lupas A (1996) Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. J Mol Biol 257:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 21:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plocinski P, Ziolkiewicz M, Kiran M, Vadrevu SI, Nguyen HB, Hugonnet J, Veckerle C, Arthur M, Dziadek J, Cross TA, Madiraju M, Rajagopalan M (2011) Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J Bacteriol 193:3246–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, Comolli LR, Moerner WE, Shapiro L (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptashne M (2011) Principles of a switch. Nat Chem Biol 7:484–487

    Article  CAS  PubMed  Google Scholar 

  • Quax-Jeuken YE, Quax WJ, Bloemendal H (1983) Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence. Proc Natl Acad Sci U S A 80:3548–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamurthi KS, Losick R (2009) Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A 106:13541–13545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Hersch N, Schnakenberg U, Magin TM, Leube RE, Merkel R, Hoffmann B (2013) Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci U S A 110:18513–18518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri D (1999) ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J 18:2372–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards DM, Hempel AM, Flardh K, Buttner MJ, Howard M (2012) Mechanistic basis of branch-site selection in filamentous bacteria. PLoS Comput Biol 8:e1002423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalbach G, Hempel AM, Vigouroux M, FLARDH K, Buttner MJ, Naldrett MJ (2013) Determination of phosphorylation sites in the DivIVA cytoskeletal protein of Streptomyces coelicolor by targeted LC-MS/MS. J Proteome Res 12:4187–4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzle S, Specht M, Waidner B (2015) Coiled coil rich proteins (Ccrp) influence molecular pathogenicity of Helicobacter pylori. PLoS One 10:e0121463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirmer EC, Guan T, Gerace L (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J Cell Biol 153:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlimpert S, Klein EA, Briegel A, Hughes V, Kahnt J, Bolte K, Maier UG, Brun YV, Jensen GJ, Gitai Z, Thanbichler M (2012) General protein diffusion barriers create compartments within bacterial cells. Cell 151:1270–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwedock J, McCormick JR, Angert ER, Nodwell JR, Losick R (1997) Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol 25:847–858

    Article  CAS  PubMed  Google Scholar 

  • Seltmann K, Fritsch AW, Kas JA, Magin TM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 110:18507–18512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapland EB, Reisinger SJ, Bajwa AK, Ryan KR (2011) An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus. J Bacteriol 193:4361–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp TH, Bruning M, Mantell J, Sessions RB, Thomson AR, Zaccai NR, Brady RL, Verkade P, Woolfson DN (2012) Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proc Natl Acad Sci U S A 109:13266–13271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith TA, Strelkov SV, Burkhard P, Aebi U, Parry DA (2002) Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. J Struct Biol 137:128–145

    Article  CAS  PubMed  Google Scholar 

  • Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15:163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soellner P, Quinlan RA, Franke WW (1985) Identification of a distinct soluble subunit of an intermediate filament protein: tetrameric vimentin from living cells. Proc Natl Acad Sci U S A 82:7929–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht M, Schatzle S, Graumann PL, Waidner B (2011) Helicobacter pylori possesses four coiled-coil-rich proteins that form extended filamentous structures and control cell shape and motility. J Bacteriol 193:4523–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetefeld J, Jenny M, Schulthess T, Landwehr R, Engel J, Kammerer RA (2000) Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat Struct Biol 7:772–776

    Article  CAS  PubMed  Google Scholar 

  • Stewart AG, Lee LK, Donohoe M, Chaston JJ, Stock D (2012) The dynamic stator stalk of rotary ATPases. Nat Commun 3:687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strahl H, Hamoen LW (2012) Finding the corners in a cell. Curr Opin Microbiol 15:731–736

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Herrmann H, Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25:243–251

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Herrmann H, Geisler N, Lustig A, Ivaninskii S, Zimbelmann R, Burkhard P, Aebi U (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306:773–781

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66

    Article  CAS  PubMed  Google Scholar 

  • Swulius MT, Chen S, Jane Ding H, Li Z, Briegel A, Pilhofer M, Tocheva EI, Lybarger SR, Johnson TL, Sandkvist M, Jensen GJ (2011) Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem Biophys Res Commun 407:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR (2010) Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141:822–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwedziak P, Wang Q, Freund SM, Löwe J (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanky NR, Young DB, Robertson BD (2007) Unusual features of the cell cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division. Tuberculosis (Edinb) 87:231–236

    Article  CAS  Google Scholar 

  • Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81

    Article  CAS  PubMed  Google Scholar 

  • Traag BA, van Wezel GP (2008) The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie Van Leeuwenhoek 94:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang PH, Li G, Brun YV, Freund LB, Tang JX (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci U S A 103:5764–5768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Ent F, Löwe J (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J 19:5300–5307

    Article  PubMed  PubMed Central  Google Scholar 

  • van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 108:15822–15827

    Article  PubMed  PubMed Central  Google Scholar 

  • Vikstrom KL, Lim SS, Goldman RD, Borisy GG (1992) Steady state dynamics of intermediate filament networks. J Cell Biol 118:121–129

    Article  CAS  PubMed  Google Scholar 

  • Waidner B, Specht M, Dempwolff F, Haeberer K, Schaetzle S, Speth V, Kist M, Graumann PL (2009) A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLoS Pathog 5:e1000669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walshaw J, Gillespie MD, Kelemen GH (2010) A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. J Struct Biol 170:202–215

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Rohde M, Machner M, Schrempf H (1999) Electron microscopy studies of cell-wall-anchored cellulose (Avicel)-binding protein (AbpS) from Streptomyces reticuli. Appl Environ Microbiol 65:886–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter S, Schrempf H (2003) Oligomerization, membrane anchoring, and cellulose-binding characteristics of AbpS, a receptor-like Streptomyces protein. J Biol Chem 278:26639–26647

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Wellmann E, Schrempf H (1998) The cell wall-anchored Streptomyces reticuli avicel-binding protein (AbpS) and its gene. J Bacteriol 180:1647–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SB, Cantlay S, Nordberg N, Letek M, Gil JA, Flardh K (2009) Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor. FEMS Microbiol Lett 297:101–109

    Article  CAS  PubMed  Google Scholar 

  • Ward MJ, Lew H, Zusman DR (2000) Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol Microbiol 37:1357–1371

    Article  CAS  PubMed  Google Scholar 

  • Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ, Errington J (2003) RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Chater KF, Deng Z, Tao M (2008) A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J Bacteriol 190:4971–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Goto H, Yokoyama T, Sillje H, Hanisch A, Uldschmid A, Takai Y, Oguri T, Nigg EA, Inagaki M (2005) Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 171:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Bartle S, Otto R, Stassinopoulos A, Rogers M, Plamann L, Hartzell P (2004) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186:6168–6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon KH, Yoon M, Moir RD, Khuon S, Flitney FW, Goldman RD (2001) Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 153:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon M, Moir RD, Prahlad V, Goldman RD (1998) Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 143:147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Y et al (1996) Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J Bacteriol 178:3177–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan JR, Cameron TA, Anderson-Furgeson J, Zambryski PC (2013) Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 110:9060–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, Herrmann H, Wallrath LL, Lammerding J (2013) Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 22:2335–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella H. Kelemen .

Editor information

Editors and Affiliations

Additional information

Dedication

This chapter is dedicated to the memory of Nora Ausmees, who was instrumental in the discovery of the first bacterial IF proteins but sadly passed away in autumn 2015.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kelemen, G.H. (2017). Intermediate Filaments Supporting Cell Shape and Growth in Bacteria. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_6

Download citation

Publish with us

Policies and ethics