Skip to main content

Overview of the Diverse Roles of Bacterial and Archaeal Cytoskeletons

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams DW, Wu LJ, Errington J (2015) Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrebi R, Wartel M, Brochier-Armanet C, Mignot T (2015) An evolutionary link between capsular biogenesis and surface motility in bacteria. Nat Rev Microbiol 13:318–326

    Article  CAS  PubMed  Google Scholar 

  • Agromayor M, Martin-Serrano J (2013) Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 23:433–441

    Article  CAS  PubMed  Google Scholar 

  • Alonso Y, Adell M, Migliano SM, Teis D (2016) ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J 283(18):3288–3302

    Article  CAS  Google Scholar 

  • Amos LA (2008) The tektin family of microtubule-stabilizing proteins. Genome Biol 9:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aylett CH, Löwe J (2012) Superstructure of the centromeric complex of TubZRC plasmid partitioning systems. Proc Natl Acad Sci U S A 109:16522–16527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylett CH, Wang Q, Michie KA, Amos LA, Löwe J (2010) Filament structure of bacterial tubulin homologue TubZ. Proc Natl Acad Sci U S A 107:19766–19771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylett CH, Löwe J, Amos LA (2011) New insights into the mechanisms of cytomotive actin and tubulin filaments. Int Rev Cell Mol Biol 292:1–71

    Article  CAS  PubMed  Google Scholar 

  • Aylett CH, Izoré T, Amos LA, Löwe J (2013) Structure of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage ΦKZ. J Mol Biol 425:2164–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach JN, Albrecht N, Bramkamp M (2014) Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis. Front Microbiol 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek JH, Rajagopala SV, Chattoraj DK (2014) Chromosome segregation proteins of Vibrio cholerae as transcription regulators. MBio 5:e01061–e01014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagchi S, Tomenius H, Belova LM, Ausmees N (2008) Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol Microbiol 70:1037–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Männik J (2014) Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. PLoS Genet 10:e1004504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barry RM, Gitai Z (2011) Self-assembling enzymes and the origins of the cytoskeleton. Curr Opin Microbiol 14:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum DA, Baum B (2014) An inside-out origin for the eukaryotic cell. BMC Biol 12:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beall B, Lutkenhaus J (1989) Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J Bacteriol 171:6821–6834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuria TK et al (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharat TA, Murshudov GN, Sachse C, Löwe J (2015a) Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature 523:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharat TA, Russo CJ, Löwe J, Passmore LA, Scheres SH (2015b) Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23:1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisicchia P, Arumugam S, Schwille P, Sherratt D (2013) MinC, MinD, and MinE drive counter-oscillation of early-cell-division proteins prior to Escherichia coli septum formation. MBio 4:e00856–e00813

    PubMed  PubMed Central  Google Scholar 

  • Bohuszewicz O, Liu J, Low HH (2016) Membrane remodelling in bacteria. J Struct Biol 196(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Bramkamp M (2012) Structure and function of bacterial dynamin-like proteins. Biol Chem 393:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun T et al (2015) Archaeal actin from a hyperthermophile forms a single-stranded filament. Proc Natl Acad Sci U S A 112:9340–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Bush MJ, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ (2015) c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13:749–760

    Article  CAS  PubMed  Google Scholar 

  • Cabeen MT, Herrmann H, Jacobs-Wagner C (2011) The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton (Hoboken) 68:205–219

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  PubMed  Google Scholar 

  • Chen S et al (2010) Electron cryotomography of bacterial cells. J Vis Exp 39:1943

    CAS  Google Scholar 

  • Chen Y, Milam SL, Erickson HP (2012) SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry 51:3100–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BW, Lin MH, Chu CH, Hsu CE, Sun YJ (2015) Insights into ParB spreading from the complex structure of Spo0J and parS. Proc Natl Acad Sci U S A 112:6613–6618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyatina AA, Nicolet S, Aebi U, Herrmann H, Strelkov SV (2012) Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 109:13620–13625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyatina AA, Guzenko D, Strelkov SV (2015) Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 32:65–72

    Article  CAS  PubMed  Google Scholar 

  • Coltharp C, Buss J, Plumer TM, Xiao J (2016) Defining the rate-limiting processes of bacterial cytokinesis. Proc Natl Acad Sci U S A 113(8):E1044–E1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell SC, Robinson EJ, Lowe J (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A 100:7889–7894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Mukherjee A, Lutkenhaus J (2008) Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. J Bacteriol 190:2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Pichoff S, Lutkenhaus J, Wirtz D (2010) Cross-linking FtsZ polymers into coherent Z rings. Mol Microbiol 78:651–668

    Article  CAS  PubMed  Google Scholar 

  • Davis BK (2002) Molecular evolution before the origin of species. Prog Biophys Mol Biol 79:77–133

    Article  CAS  PubMed  Google Scholar 

  • Dobro MJ et al (2013) Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 24:2319–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan C, Bramkamp M (2014) Cell division in Corynebacterineae. Front Microbiol 5:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Donovan C et al (2015) A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res 43:5002–5016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper O et al (2011) MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 82:342–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duggin IG et al (2015) CetZ tubulin-like proteins control archaeal cell shape. Nature 519:362–365

    Article  CAS  PubMed  Google Scholar 

  • Duman R et al (2013) Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci U S A 110:E4601–E4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupaigne P et al (2012) Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell 48:560–571

    Article  CAS  PubMed  Google Scholar 

  • Durand D et al (2012) Expression, purification and preliminary structural analysis of Escherichia coli MatP in complex with the matS DNA site. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:638–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye NA, Pincus Z, Fisher IC, Shapiro L, Theriot JA (2011) Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol Microbiol 81(2):368–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan AJ, Biboy J, van’t Veer I, Breukink E, Vollmer W (2015) Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond Ser B Biol Sci 370

    Google Scholar 

  • El Andari J, Altegoer F, Bange G, Graumann PL (2015) Bacillus subtilis bactofilins are essential for flagellar Hook- and filament assembly and dynamically localize into structures of less than 100 nm diameter underneath the cell membrane. PLoS One 10:e0141546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erb ML et al (2014) A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. Elife 3

    Google Scholar 

  • Erickson HP, Osawa M (2010) Cell division without FtsZ–a variety of redundant mechanisms. Mol Microbiol 78:267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington J (2013) L-form bacteria, cell walls and the origins of life. Open Biol 3:120143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Errington JAJ-W (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Espéli O et al (2012) A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 31:3198–3211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eun YJ, Kapoor M, Hussain S, Garner EC (2015) Bacterial filament systems: toward understanding their emergent behavior and cellular functions. J Biol Chem 290:17181–17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faguy DM, Doolittle WF (1998) Cytoskeletal proteins: the evolution of cell division. Curr Biol 8:R338–R341

    Article  CAS  PubMed  Google Scholar 

  • Fink G, Löwe J (2015) Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments. Proc Natl Acad Sci U S A 112:E1845–E1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleurie A et al (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    Article  PubMed  PubMed Central  Google Scholar 

  • Gayathri P et al (2012) A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338:1334–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141:927–942

    Article  CAS  PubMed  Google Scholar 

  • Ghosal D, Löwe J (2015) Collaborative protein filaments. EMBO J 34:2312–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal D, Trambaiolo D, Amos LA, Lowe J (2014) MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glas M et al (2015) The Soluble periplasmic domains of Escherichia coli cell division proteins FtsQ/FtsB/FtsL form a trimeric complex with submicromolar affinity. J Biol Chem 290:21498–21509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goley ED et al (2011) Assembly of the caulobacter cell division machine. Mol Microbiol 80:1680–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham TG et al (2014) ParB spreading requires DNA bridging. Genes Dev 28:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JD, Bonner JF (1973) Chromatin-like aggregates of uranyl acetate. Nat New Biol 244:80–81

    Article  CAS  PubMed  Google Scholar 

  • Grüber G, Manimekalai MS, Mayer F, Müller V (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837:940–952

    Article  PubMed  CAS  Google Scholar 

  • Guo P et al (2014) Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 32:853–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holečková N et al (2015) LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. MBio 6:e01700–e01714

    Google Scholar 

  • Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2015) Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Natl Acad Sci U S A 112:E7055–E7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui MP et al (2010) ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA. Proc Natl Acad Sci U S A 107:4590–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ietswaart R, Szardenings F, Gerdes K, Howard M (2014) Competing ParA structures space bacterial plasmids equally over the nucleoid. PLoS Comput Biol 10:e1004009

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 36:256–266

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Mignot T (2015) The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 46:143–154

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Makarova KS, Koonin EV, Aravind L (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32:5260–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izoré T, Duman R, Kureisaite-Ciziene D, Löwe J (2014) Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments. FEBS Lett 588:776–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacquier N, Viollier PH, Greub G (2015) The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 39:262–275

    Article  PubMed  Google Scholar 

  • Jiang S et al (2016) Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation. Proc Natl Acad Sci U S A 113(9):E1200–E1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones LJ, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9:167–174

    CAS  PubMed  Google Scholar 

  • Kawai Y, Daniel RA, Errington J (2009) Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol Microbiol 71:1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Kiekebusch D, Thanbichler M (2014) Spatiotemporal organization of microbial cells by protein concentration gradients. Trends Microbiol 22:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kiekebusch D, Michie KA, Essen LO, Löwe J, Thanbichler M (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46:245–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (1993) A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier. Philos Trans R Soc Lond Ser B Biol Sci 370:20140333

    Article  CAS  Google Scholar 

  • Kraemer JA et al (2012) A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149:1488–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku C, Lo WS, Kuo CH (2014) Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria. Biochem Biophys Res Commun 446:927–932

    Article  CAS  PubMed  Google Scholar 

  • Kühn J et al (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29:327–339

    Article  PubMed  CAS  Google Scholar 

  • Laddomada F, Miyachiro MM, Dessen A (2016) Structural insights into protein-protein interactions involved in bacterial cell wall biogenesis. Antibiotics (Basel) 5:14

    Article  CAS  Google Scholar 

  • LaPointe LM et al (2013) Structural organization of FtsB, a transmembrane protein of the bacterial divisome. Biochemistry 52:2574–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen RA et al (2007) Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21:1340–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leger MM et al (2015) An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 112:10239–10246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard TA, Butler PJ, Löwe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch. EMBO J 24:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken) 70:409–423

    Article  CAS  Google Scholar 

  • Linck R et al (2014) Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 289:17427–17444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindås AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105(48):18942–18946

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindås AC, Chruszcz M, Bernander R, Valegård K (2014) Structure of crenactin, an archaeal actin homologue active at 90°C. Acta Crystallogr D Biol Crystallogr 70:492–500

    Article  PubMed  CAS  Google Scholar 

  • Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46

    Article  CAS  PubMed  Google Scholar 

  • Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792

    Article  CAS  PubMed  Google Scholar 

  • Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18:577–583

    Article  CAS  PubMed  Google Scholar 

  • Low HH, Löwe J (2010) Dynamin architecture–from monomer to polymer. Curr Opin Struct Biol 20:791–798

    Article  CAS  PubMed  Google Scholar 

  • Low HH, Sachse C, Amos LA, Löwe J (2009) Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139:1342–1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Löwe J, Amos LA (2009) Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int J Biochem Cell Biol 41:323–329

    Article  PubMed  CAS  Google Scholar 

  • Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus JF, Donachie WD (1979) Identification of the ftsA gene product. J Bacteriol 137:1088–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WF, Sousa FL (2015) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8(2)

    Google Scholar 

  • Martin-Galiano AJ et al (2011) Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. J Biol Chem 286:19789–19803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriello EM et al (2010) Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J 29:315–326

    Article  CAS  PubMed  Google Scholar 

  • Mercier R, Kawai Y, Errington J (2014) General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. Elife 3

    Google Scholar 

  • Michie KA, Boysen A, Low HH, Møller-Jensen J, Löwe J (2014) LeoA, B and C from enterotoxigenic Escherichia coli (ETEC) are bacterial dynamins. PLoS One 9:e107211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima SY, Nakamura M, Uzuka A, Era A (2014) FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. Front Plant Sci 5:459

    Article  PubMed  PubMed Central  Google Scholar 

  • Møller-Jensen J, Ringgaard S, Mercogliano CP, Gerdes K, Löwe J (2007) Structural analysis of the ParR/parC plasmid partition complex. EMBO J 26:4413–4422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montabana EA, Agard DA (2014) Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. Proc Natl Acad Sci U S A 111:3407–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenstein RM et al (2015) RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc Natl Acad Sci U S A 112:12510–12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriscot C et al (2011) Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PLoS One 6:e21921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motallebi-Veshareh M, Rouch DA, Thomas CM (1990) A family of ATPases involv2ed in active partitioning of diverse bacterial plasmids. Mol Microbiol 4:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Nan B, Zusman DR (2011) Uncovering the mystery of gliding motility in the myxobacteria. Annu Rev Genet 45:21–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan B, McBride MJ, Chen J, Zusman DR, Oster G (2014) Bacteria that glide with helical tracks. Curr Biol 24:R169–R173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni L, Xu W, Kumaraswami M, Schumacher MA (2010) Plasmid protein TubR uses a distinct mode of HTH-DNA binding and recruits the prokaryotic tubulin homolog TubZ to effect DNA partition. Proc Natl Acad Sci U S A 107:11763–11768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445

    Article  CAS  PubMed  Google Scholar 

  • Oliva MA, Cordell SC, Lowe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Oliva MA et al (2010) Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J 29:1988–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva MA, Martin-Galiano AJ, Sakaguchi Y, Andreu JM (2012) Tubulin homolog TubZ in a phage-encoded partition system. Proc Natl Acad Sci U S A 109:7711–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz C et al (2015) Crystal structure of the Z-ring associated cell division protein ZapC from Escherichia coli. FEBS Lett 589:3822–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings–constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci U S A 110:11000–11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472

    Article  CAS  PubMed  Google Scholar 

  • Ouellette SP, Karimova G, Subtil A, Ladant D (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85:164–178

    Article  CAS  PubMed  Google Scholar 

  • Ozyamak E, Kollman J, Agard DA, Komeili A (2013) The bacterial actin MamK: in vitro assembly behavior and filament architecture. J Biol Chem 288:4265–4277

    Article  CAS  PubMed  Google Scholar 

  • Park KT, Du S, Lutkenhaus J (2015) MinC/MinD copolymers are not required for Min function. Mol Microbiol 98:895–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Núñez D et al (2011) A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Mol Microbiol 79:759–771

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Rosati G, Ludwig W, Schleifer KH, Petroni G (2007) Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol Biol Evol 24:1439–1442

    Article  CAS  PubMed  Google Scholar 

  • Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ (2011) Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9:e1001213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polka JK, Kollman JM, Mullins RD (2014) Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling. Proc Natl Acad Sci U S A 111:2176–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp D, Robinson RC (2012) Supramolecular cellular filament systems: how and why do they form. Cytoskeleton (Hoboken) 69:71–87

    Article  CAS  Google Scholar 

  • Ptacin JL et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacin JL et al (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci U S A 111:E2046–E2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamurthi KS, Losick R (2009) Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A 106:13541–13545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL (2013) Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 24:2340–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Lamothe R, Nicolas E, Sherratt DJ (2012) Chromosome replication and segregation in bacteria. Annu Rev Genet 46:121–143

    Article  CAS  PubMed  Google Scholar 

  • Rivera CR, Kollman JM, Polka JK, Agard DA, Mullins RD (2011) Architecture and assembly of a divergent member of the ParM family of bacterial actin-like proteins. J Biol Chem 286:14282–14290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeben A et al (2006) Crystal structure of an archaeal actin homolog. J Mol Biol 358:145–156

    Article  CAS  PubMed  Google Scholar 

  • Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322(5908):1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson RY et al (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41:186–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlieper D, Oliva MA, Andreu JM, Löwe J (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci U S A 102:9170–9175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh AL, Audhya A (2014) The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 49:242–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher MA, Zeng W, Huang KH, Tchorzewski L, Janakiraman A (2016) Structural and functional analyses reveal insights into the molecular properties of the Escherichia coli Z ring stabilizing protein, ZapC. J Biol Chem 291:2485–2498

    Article  CAS  PubMed  Google Scholar 

  • Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2:a000364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi C et al (2015) Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci Adv 1:e1501087

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimogonya Y et al (2015) Torque-induced precession of bacterial flagella. Sci Rep 5:18488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava A, Lele PP, Berg HC (2015) A rotary motor drives Flavobacterium gliding. Curr Biol 25:338–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skau CT, Waterman CM (2015) Specification of architecture and function of actin structures by actin nucleation factors. Annu Rev Biophys 44:285–310

    Article  CAS  PubMed  Google Scholar 

  • Skoog K, Daley DO (2012) The Escherichia coli cell division protein ZipA forms homodimers prior to association with FtsZ. Biochemistry 51:1407–1415

    Article  CAS  PubMed  Google Scholar 

  • Spang A et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szardenings F, Guymer D, Gerdes K (2011) ParA ATPases can move and position DNA and subcellular structures. Curr Opin Microbiol 14:712–718

    Article  CAS  PubMed  Google Scholar 

  • Szwedziak P, Löwe J (2013) Do the divisome and elongasome share a common evolutionary past. Curr Opin Microbiol 16:745–751

    Article  CAS  PubMed  Google Scholar 

  • Szwedziak P, Wang Q, Freund SM, Löwe J (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwedziak P, Wang Q, Bharat TA, Tsim M, Löwe J (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. Elife 3:e04601

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonthat NK et al (2013) SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid. Proc Natl Acad Sci U S A 110:10586–10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachtenberg S, Schuck P, Phillips TM, Andrews SB, Leapman RD (2014) A structural framework for a near-minimal form of life: mass and compositional analysis of the helical mollicute Spiroplasma melliferum BC3. PLoS One 9:e87921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treuner-Lange A et al (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol Microbiol 87:235–253

    Article  CAS  PubMed  Google Scholar 

  • Trip EN, Scheffers DJ (2015) A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Sci Rep 5:18190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner RD et al (2010) Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun 1:26

    Article  PubMed  CAS  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    CAS  Google Scholar 

  • Valas RE, Bourne PE (2011) The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Johnson CM, Persons L, de Boer P, Löwe J (2010) Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J 29:1081–1090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Ent F, Izoré T, Bharat TA, Johnson CM, Löwe J (2014) Bacterial actin MreB forms antiparallel double filaments. Elife 3:e02634

    PubMed  PubMed Central  Google Scholar 

  • van Teeffelen S et al (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 108:15822–15827

    Article  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Neuman KC, Mizuuchi K (2014) A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc Natl Acad Sci U S A 111:4880–4885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Lia M, Mizuuchia M, Hwanga LC, Seol Y, Neuman KC, Mizuuchia K (2016) Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Natl Acad Sci U S A 113:E1479–E1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanelo F, Ordenes A, Brunet J, Lagos R, Monasterio O (2011) A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC Struct Biol 11:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Rudner DZ (2014) Spatial organization of bacterial chromosomes. Curr Opin Microbiol 22:66–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde A, Mullineaux CW (2015) Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors. Mol Microbiol 98:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S (2015) Structure and mechanism of ABC transporters. F1000Prime Rep 7:14

    Google Scholar 

  • Yang R et al (2004) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186:6168–6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH (2015) Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 22:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yooshida Y, Miyagishima SY, Kuroiwa H, Kuroiwa T (2012) The plastid-dividing machinery: formation, constriction and fission. Curr Opin Plant Biol 15:714–721

    Article  CAS  Google Scholar 

  • Yuan Y et al (2015) Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl Environ Microbiol 81:339–350

    Article  PubMed  CAS  Google Scholar 

  • Yutin N, Koonin EV (2012) Archaeal origin of tubulin. Biol Direct 7:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr EA et al (2014) The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 22:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M et al (2014) Self-assembly of MinE on the membrane underlies formation of the MinE ring to sustain function of the Escherichia coli Min system. J Biol Chem 289:21252–21266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuckerman DM et al (2015) The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLoS One 10:e0121074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Website

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda A. Amos or Jan Löwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amos, L.A., Löwe, J. (2017). Overview of the Diverse Roles of Bacterial and Archaeal Cytoskeletons. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_1

Download citation

Publish with us

Policies and ethics