Skip to main content

Surjectivity and Injectivity of Global Maps

  • Chapter
  • First Online:
Cellular Automata: Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1979 Accesses

Abstract

If we encounter a function then we may ask whether it is continuous and next whether it is bijective, surjective or injective. With respect to cellular automata we have already dealt with continuity. This section is concerned with the second question. Also physicists may want to know whether the dynamical system defined by a cellular automaton is reversible. Physicists use cellular automata as simple models for microscopic processes. Hence there should be some interest to identify those cellular automata that can be reversed in time, i.e., which have a bijective global function [163].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sets \(\tilde{\Gamma }^{+}\) and \(\tilde{\Gamma }^{-}\) can be interpreted as the closure and the interior of \(\tilde{\Gamma }\).

References

  1. S. Capobianco, Surjunctivity for cellular automata in Besicovitch spaces. J. Cell. Autom. 4, 89–98 (2009)

    MathSciNet  MATH  Google Scholar 

  2. T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups. Springer Monographs in Mathematics (Springer, Berlin, 2010)

    Google Scholar 

  3. E. Czeizler, On the size of the inverse neighborhoods for one-dimensional reversible cellular automata. Theor. Comput. Sci. 325, 273–284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Czeizler, J. Kari, A tight linear bound on the synchronization delay of bijective automata. Theor. Comput. Sci. 380, 23–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Dubois-Violette, A. Rouet, A mathematical classification of the one-dimensional deterministic cellular automata. Commun. Math. Phys. 112, 627–631 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Fukś, A. Skelton, Classification of two-dimensional binary cellular automata with respect to surjectivity, in Proceedings of the International Conference on Computational Science, CSC 2012, pp. 51–57, 2012

    Google Scholar 

  7. W. Gottschalk, Some general dynamical notions, in Recent Advances in Topological Dynamics, Proceedings of Conference in Topological Dynamics, Yale University, Lecture Notes on Mathematics, vol. 318 (Springer, Berlin, 1973), pp. 120–125

    Google Scholar 

  8. G. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Theory 3, 320–374 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Kari, Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48, 149–182 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Machi, F. Mignosi, Garden of Eden configurations for cellular automata on Cayley graphs of groups. SIAM J. Discret. Math. 160, 44–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Moore, Machine models of self-reproduction, in Proceedings of Symposia in Applied Mathematics, vol. 14 (American Mathematical Society, Providence, RI, 1962), pp. 17–33

    Google Scholar 

  12. J. Myhill, The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)

    MathSciNet  MATH  Google Scholar 

  13. K. Sutner, Linear cellular automata and de Bruijn automata, in Cellular Automata, ed. by M. Delorme, J. Mazoyer, Mathematics and Its Applications, vol. 460 (Springer, Berlin, 1998), pp. 303–320

    Google Scholar 

  14. T. Toffoli, N. Margolus, Invertible cellular automata: a review. Phys. D 45, 229–253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadeler, KP., Müller, J. (2017). Surjectivity and Injectivity of Global Maps. In: Cellular Automata: Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-53043-7_9

Download citation

Publish with us

Policies and ethics