Skip to main content

Turing Machines, Tiles, and Computability

  • Chapter
  • First Online:
Cellular Automata: Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2003 Accesses

Abstract

Cellular automata can be seen as dynamical systems or as algebraic or combinatorial objects, but one can also take the word automaton literally and use methods from logic and languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At this stage of reasoning one will ask whether the problem of decidability is decidable. See the comments on universal Turing machines later.

References

  1. A.E. Adamatzky, Collision Based Computing (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  2. N. Aubrun, J. Kari, Tiling problems on Baumslag-Solitar groups. Mach. Comput. Univ. 128, 35–46 (2013)

    Google Scholar 

  3. A. Ballier, M. Stein, The domino problem on groups of polynomial growth. ArXiv e-prints 1311.4222 (2013)

    Google Scholar 

  4. S. Beatty, N. Altshiller-Court, O. Dunkel, A. Pelletier, F. Irwin, J.L. Riley, P. Fitch, D.M. Yost, Problems for solutions: 3173–3180. Am. Math. Month. 33, 159 (1926)

    Article  MathSciNet  Google Scholar 

  5. S. Beatty, A. Ostrowski, J. Hyslop, Solutions to problem 3173. Am. Math. Month. 34, 159–160 (1927)

    Article  Google Scholar 

  6. R. Berger, Undecidability of the domino problem. Memoirs Am. Math. Soc. 66, 72–73 (1966)

    MathSciNet  MATH  Google Scholar 

  7. E.R. Berlekamp, J.H. Conway, R.K. Guy, What is life? in Winning Ways for Your Mathematical Plays, ed. by E. Berlekamp, vol. 2 (Academic, New York, 1982)

    Google Scholar 

  8. J.R. Büchi, Symposium on decision problems: on a decision method in restricted second order arithmetic, in Logic, Methodology and Philosophy of Science, Proceeding of the 1960 International Congress, ed. by P.S. Ernest Nagel, A. Tarski, vol. 44 (Elsevier, Amsterdam, 1966), pp. 1–11

    Google Scholar 

  9. T. Ceccherini-Silberstein, M. Coornaert, F. Fiorenzi, P. Schupp, Groups, graphs, languages, automata, games and second-order monadic logic. Eur. J. Comb. 7, 1330–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order Logic (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  11. B. Durand, The surjectivity problem for 2D cellular automata. J. Comput. Syst. Sci. 49, 718–724 (1994)

    Article  MATH  Google Scholar 

  12. H. Enderton, A Mathematical Introduction to Logic (Academic, New York, 1972)

    MATH  Google Scholar 

  13. B. Grünbaum, G. Shephard, Tilings and Pattern (Freeman, New York, 1978)

    MATH  Google Scholar 

  14. H. Hermes, Enumerability, Decidability, Computability (Springer, Berlin, 1969)

    Book  MATH  Google Scholar 

  15. H. Hermes, Entscheidungsproblem und Dominospiele, in Selecta Mathematica II, ed. by K. Jacobs (Springer, Berlin, 1970), pp. 3–64

    Google Scholar 

  16. R. Honsberger, Ingenuity in Mathematics (The Mathematical Association of America, Washington, DC, 1970)

    MATH  Google Scholar 

  17. J.E. Hopecroft, J.D. Ullman, Formal Languages and their Relation to Automata (Addison-Wesley, Reading, MA, 1969)

    Google Scholar 

  18. P.K. Hopper, The undecidability of the turing machine immortality problem. J. Symb. Log. 31, 219–234 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Kari, Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48, 149–182 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kari, Rice’s theorem for the limit sets of cellular automata. Theor. Comput. Sci. 127, 229–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Kari, A small aperiodic set of wang tiles. Discret. Math. 160, 259–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Kari, On the undecidability of the tiling problem, in SOFSEM 2008: Theory and Practice of Computer Science, ed. by V. Geffert, J. Karhumäki, A. Bettoni, B. Preneel, P. Návrat, M. Bieliková (Springer, Berlin, 2008)

    Google Scholar 

  23. P. Koiran, M. Cosnard, M. Garzon, Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132, 113–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Kuske, M. Lohrey, Logical aspects of Cayley-graphs: the monodid case. Int. J. Alg. Comput. 16, 307–340 (2006)

    Article  MATH  Google Scholar 

  25. S. Lipschutz, Set Theory (McGrawHill, New York, 1964)

    MATH  Google Scholar 

  26. M. Margenstern, The domino problem of the hyperbolic plane is undecidable. Theor. Comput. Sci. 407, 29–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Moore, Machine models of self-reproduction, in Essays on Cellular Automata, ed. by R. Bellman (American Mathematical Society, Providence, RI, 1977), pp. 17–34

    Google Scholar 

  28. D.E. Muller, P.E. Schupp, Context-free languages, group, the theory of ends, second-order logic, tiling problems, cellular automata, and vector addition systems. Bull. Am. Math. Soc. 4, 331–334 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. D.E. Muller, P.E. Schupp, Groups, the theory of ends, and context-free languages. J. Comput. Syst. Sci. 26, 295–310 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Nagel, J. Newman, Gödel’s Proof (New York University Press, New York, 1958)

    MATH  Google Scholar 

  31. J.W.S.B. Rayleigh, The Theory of Sound 1 (Macmillan, New York, 1894)

    MATH  Google Scholar 

  32. R. Robinson, Undecidability and nonperiodicity of tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Vuillon, Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10, 787–805 (2003)

    MathSciNet  MATH  Google Scholar 

  34. H. Wang, Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)

    Article  Google Scholar 

  35. K. Weihrauch, Computable Analysis (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  36. S. Wolfram, A New Kind of Science (Wolfram Media, Boca Raton, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadeler, KP., Müller, J. (2017). Turing Machines, Tiles, and Computability. In: Cellular Automata: Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-53043-7_8

Download citation

Publish with us

Policies and ethics